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Abstract
Under normal physiological condition, the biomineralization process is limited to skeletal tissues and teeth and occurs throughout
the individual’s life. Biomineralization is an actively regulated process involving the progressive mineralization of the extracel-
lular matrix secreted by osteoblasts in bone or odontoblasts and ameloblasts in tooth. Although the detailed molecular mecha-
nisms underlying the formation of calcium–phosphate apatite crystals are still debated, it is suggested that calcium and phosphate
may need to be transported across the membrane of the mineralizing cell, suggesting a pivotal role of phosphate transporters in
bone and tooth mineralization. In this context, this short review describes the current knowledge on the role of Slc34 Na+–
phosphate transporters in skeletal and tooth mineralization.
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Biomineralization processes

Mineral nucleation

In vertebrates, biomineralization is the active process used by
the organism to spatially and timely control the spontaneous
crystallization of Ca2+ and inorganic phosphate (Pi) from sat-
urated body fluids [12, 39]. Since extracellular concentrations
of Ca2+ and Pi are higher than their solubilization products,
soft tissues have developed complex regulatory systems that
prevent crystal formation, while mineralizing tissues have ac-
quired the ability to overcome mineralization inhibitory sys-
tems and activate mineralization initiation processes [81, 86].
The mineral phase of the skeleton and teeth is composed of
hydroxyapatite [Ca10(PO4)6(OH)2] crystals that settle in the
extracellular matrix of mineralized tissues. For a human being

weighing 70 kg, this corresponds to about 700 g of phospho-
rus or 85% of the body’s total phosphorus [9].

A challenging question regarding biomineralization is to
uncover the mechanisms by which hydroxyapatite crystal is
initially formed, as well as the subsequent regulatory process-
es that control crystal growth [12, 39]. These aspects are ac-
tively debated by investigators in the field of mineralized tis-
sues [14, 39]. Although the detailed process of apatite crystal
formation in vivo still remains unclear, researchers have pro-
posed that at least three majors mechanisms be involved
(Fig. 1). The first and most studied process of initiation and
regulation of biomineralization involves the formation and
release from mineralizing cells of membrane-enclosed Ca–P
particles named matrix vesicles (MVs) [15, 89]. These vesi-
cles provide a microenvironment enabling to locally concen-
trate Ca2+ and Pi ions and generate hydroxyapatite crystals
that will be deposited onto the extracellular matrix molecules.
A second cell-dependent mechanism involves the intracellular
transport of calcium and phosphate into vesicles that will
transport Ca–P particles to the collagen fibers [14]. The third
process has described either the direct nucleation of apatite
crystals on the collagen gap zones of the extracellular matrix
[28] and a transient formation of amorphous mineral precur-
sors before deposition within collagen fibrils macromolecules
[53, 54] (Fig. 1). Although more work is necessary to study
the relative contribution of these mechanisms, a substantial
body of evidence supports both cell-dependent and cell-
independent theories. Indeed, crystal nucleation in cartilage
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is often described as requiring MVs, as the formation of the
first crystal phase depends upon a protected microenviron-
ment, which the extracellular matrix of the cartilage, com-
posed mainly of dispersed type II collagen fibrils, cannot pro-
vide. In contrast, the matrix synthesized by bone (osteoblasts),
dentine (odontoblasts), or enamel (ameloblasts) contains large
amounts of tightly packed type I collagen or non-collagenous
proteins, which are believed to provide the microenvironment
necessary for crystal nucleation without necessarily requiring
MVs. Therefore, the different theories of mineral nucleation
may not be mutually exclusive but may occur simultaneously,
at different stages of development or in different tissues [39].

Requirement for phosphate transporters

Regardless of the nucleation mechanisms involved, the bio-
chemical composition of hydroxyapatite crystals suggests that
Pi availability could be a critical factor for the adequate

formation of these crystals and, therefore, mineralization. In
addition to locally deposited Pi, circulating Pi is a key deter-
minant of skeletal and dental mineralization [7, 66, 87]. As a
result, serum phosphate deficiency is the common character-
istic of all rickets, and clinical evidence of the role of Pi in
bone formation was highlighted more than 60 years ago [79].
Despite this, the mechanisms by which Pi is translocated from
serum to mineralizing cells or mineralization sites are still
poorly understood, while this knowledge is essential for un-
derstanding the biomineralization mechanisms at a molecular
level. In contrast to the well described role of annexins
allowing Ca2+ to enter MVs [5, 40, 41], the formal description
of the Pi transport system allowing Pi entry into MVs is still
lacking. The Na+–Pi cotransporters Slc20a1 (PiT1) and
Slc20a2 (PiT2) have been proposed to mediate Pi loading into
the MVs [12, 58, 91]. Their role in the transport of Pi within
MVs has been inferred from their expression in the mineral-
izing cells from which MVs are generated and from the

Fig. 1 Schematic view of ongoing biomineralization mechanisms
hypotheses. (1) Phosphate and calcium ions are transported into the
mineralizing cell and can be concentrated in intracellular vesicles where
they will form amorphous calcium–phosphate particles that will be
transported to the collagen fibers after vesicle budding. Crystalline
apatite may also form and is released from the cell and deposited
directly on collagen fibers. (2) Cell-dependent mechanism also rely on
the plasma membrane budding that will form so-called matrix vesicles

(MV) that will transport and concentrate calcium and phosphate ions
extracellularly. Following their disruption, the MVs will deposit CaP
apatite crystals onto collagen fibers. (3) Cell-independent mechanisms
involves the direct nucleation of mineral in the collagen gap zones,
which is mediated by non-collagenous proteins including osteopontin
(OPN), dentin sialophosphoprotein (DSPP), and dentin matrix protein 1
(DMP1)

Pflugers Arch - Eur J Physiol

Author's personal copy



numerous publications describing the regulation of PiT1 (and
PiT2 to a lesser extent) in bone and cartilage cells in vitro by
osteogenic factors. However, no published experiment to date
has formally demonstrated the presence of these transporters
at the MVs surface, as this has been done for annexins.
Moreover, early in vivo experiments using transgenic mice
over-expressing PiT1 [75] or genetically modified mouse
models under-expressing PiT1 [17] failed to demonstrate a
major contribution of this transporter to mineralization pro-
cesses. Recently, PiT2 KO mice have been described as hav-
ing decreased bone mineralization, but the underlying mech-
anism has not been studied [92] and since the observed phe-
notype may result from an indirect effect of the ubiquitous
deletion of PiT2, tissue-specific deletion of this transporter is
necessary to confirm its direct role inmineralization. Finally, it
is also important to note that apart from the mineralization
process driven by MVs, which necessarily requires the trans-
port of Pi through a phospholipid membrane, the involvement
of Pi transporters for direct nucleation of apatite crystals on the
extracellular matrix of bone or teeth remains an open question.

The lack of definite demonstration of a role of Slc20 trans-
porters in biomineralization calls for alternative possibilities.
While the Slc34 transporters were described as being essen-
tially expressed in the kidney, liver or lung, detailed analysis
of their expression pattern reveal that this is not the case [83]
and that these transporters may be expressed in mineralizing
organs. In addition, the availability of Slc34-deficient animal
models allows for the investigation of bone and teeth pheno-
type in the absence of Slc34 transporters. In this brief review,
we will gather available information on the expression of
Slc34 transporters in mineralizing organs and their putative
role in biomineralization mechanisms.

Expression and regulation of Slc34 Pi
transporters in the skeleton and teeth
(Table 1)

Studying the expression of multi-spanning transmembrane
proteins in mineralized tissues has often been regarded as a
laborious and troublesome task [4]. The first technical diffi-
culty is the need to decalcify the bone samples before process-
ing to the slide preparation. This step requires several days to
several weeks depending on the tissue and its size and often
increases technical issues for obtaining nice immunohisto-
chemistry or in situ hybridization [4]. In addition, working
with uncalcified cartilage can be still a challenge for the col-
lection of clean and abundant mRNA due to the important
amount of glycosaminoglycans preventing easy isolation of
RNAs [68]. For these reasons, high-throughput analyses of
proteins and/or mRNA expressed in the skeleton and the teeth
are not often performed, and public databases that are

available on the web (RNAseq, microarrays, SAGE) rarely
include the bone, cartilage, or tooth.

Among the public databases reporting gene expression in
the skeleton, the Eurexpress atlas (http://www.eurexpress.org)
, a genome-wide transcriptome atlas of RNA in situ hybridi-
zation of a developing mouse at embryonic day 14.5 [23],
identified the expression of Slc34a1 in only two developing
organs: the kidney and bone. Strong renal expression was
illustrated in the metanephros, while strong expression was
also found in the axial (ribs), appendicular (femur and clavi-
cle), oral (mandible and maxilla), and cranial (basioccipital
and orbito-sphenoid bones) skeletons. Moderate expression
was also found in the humerus, scapula, and pelvis. The ex-
pression of Slc34a1 has not been reported in any other tissue
in this model. As for the expression of Slc34a2 and Slc34a3,
in situ hybridization was negative for Slc34a3, whereas data
analysis for Slc34a2 is still pending [23]. A search for the
expression of Slc34 transporters in mineralized tissues in other
available databases led to negative results. Importantly, it
should be noted that the reported expression of Slc34a1 in
the Eurexpress database may be more likely to relate to a
developmental role of Slc34a1 in the skeleton than a role in
bone mineralization since no mineralized tissue is present at
E14.5 in the mouse embryo.

In vitro, expression of Slc34a1 has been reported in osteo-
blastic cell lines (MC3T3 and UMR106 cells) during in vitro
mineralization [49] by non-quantitative PCR andWestern blots.
In this report, Slc34a1 was upregulated by Pi supplementation
and culture stage, suggesting a possible role during mineraliza-
tion. In the bone resorbing cells osteoclasts, the expression of
Slc34a1 was reported in vivo in bones (using western-blots and
immunohistochemistry) more than 20 years ago [29, 30].
Slc34a1 was also expressed in vitro in murine osteoclast-like
cells generated from RAW264.7 cells by treatment with recep-
tor activator of NF-kB (RANKL) [31] and was shown to be
located at the basolateral membrane of osteoclasts, opposite to
the ruffled border [38]. In cartilage, a faint expression of
Slc34a1 has been reported in the hypertrophic chondrocytes
from the chick growth plate by immunohistochemistry [55].
That being said, it is important to realize that these results de-
scribing the expression of Slc34a1 in a number of skeletal cells
must be taken with caution because, to our knowledge, the
expression of Slc34a1 has not been confirmed in chondrocytes
and osteoblasts (especially primary osteoblasts) and led to con-
tradictory results in osteoclasts. Indeed, Ito et al. could not
detect the expression of Slc34a1 protein by western-blot or
immunofluorescence in the latter cells [35]. In dental cells,
Slc34a1 was reported to be expressed (using non-quantitative
PCR) in the rat odontoblast-like mineralizing pulpal cell line
(MRPC-1), although protein expression was not studied [48].
In contrast, no Slc34a1 expression was detected in mouse germ
cells by RT-PCR and northern blots [60] or ameloblasts [44].
Similarly, we were unable to detect Slc34a1 in teeth using PCR
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and in situ hybridization in mouse germ cells and human dental
samples [57], as well as in the rat odontoblastic (M2H4) and
mouse ameloblastic-like (ALC) cell lines [56]. In humans, Tada
et al. reported negative expression of Slc34a1 in primary pulp
cells differentiated into odontoblasts [76].

Similarly to Slc34a1, Slc34a2 expression was also reported
inMC3T3 and UMR106 cell lines in vitro [49] using RT-PCR
and western blots, although, unlike Slc34a1, no regulation of
Slc34a2 was shown by Pi supplementation and culture stage.
To our knowledge, no expression of Slc34a2 was demonstrat-
ed in osteoclasts or cartilage. While evidence of expression of
Slc34a2 in the skeleton appears weak, expression of Slc34a2
has been found and confirmed in the tooth by several inde-
pendent groups. We and others have shown that the expres-
sion of Slc34a2 mRNA in enamel is negligible during the
secretory stage and significantly upregulated during the
maturation-stage [44, 57, 93]. Using a murine anti-Slc34a2
antibody, we could detect the late expression of Slc34a2 in
ameloblasts of the incisors and molars at P6 and P10 [57],
consistent with the study of Bronckers and colleagues who
showed that this expression was limited to the apical pole of
mature ameloblasts [19]. While the significance of Slc34a2
expression at the apical pole of ameloblast during this

differentiation stage remains to be explained, it is important
to stress that this pattern of expression was rather specific and
that no expression of Slc34a2 could be found elsewhere in the
tooth, including in odontoblasts [57].

Since Slc34a3 has been discovered later than the other type
II Na+–Pi co-transporters, even less data are available on its
specific profile of expression in the skeleton and teeth. To our
knowledge, there no published data illustrating an expression
of Slc34a3 in cells from the skeleton (either chondrocyte,
osteoblast, or osteoclast). In addition, we and others have re-
ported negligible expression in ameloblasts and odontoblasts
[44, 56, 57], whereas expression in human primary pulp cells
differentiated into odontoblasts was negative [76].

Lessons from Slc34-deficient mouse models
and patients carrying Slc34 mutations

Slc34a1

The major physiological manifestation of Slc34a1 deletion in
mice is the apparition of a renal Pi reabsorption defect [6, 72],
account ing for the observed hypophosphatemia,

Table 1 Summary of studies demonstrating the expression or the non-expression of Slc34 and Slc20 transporters in skeleton and tooth

Cell type Slc34a1 Slc34a2 Slc34a3 Slc20a1 Slc20a2

Osteoblasts (+) MC3T3 (PCR, WB)
[49]

(+) MC3T3, UMR106,
(PCR, WB) [49]

(+) MC3T3 (PCR) [49] (+) MC3T3 (PCR) [49]

Osteoclasts (+) Osteoclasts in vivo
(WB, IHC) [29, 30]

(+) RAW264.7 [31, 38]

(−) Osteoclasts [35]
Chondrocytes (±) Hypertrophic

chondrocytes (IHC)
[55]

(+) Hypertrophic
chondrocytes (ISH)
[61]

(+) Growth plate
chondrocytes [21]

(+) Growth plate
chondrocytes [21]

Ameloblasts (−) Ameloblasts [44] (+) Ameloblasts in
maturation stage
[19, 44, 57, 93]

(−) Ameloblasts
[44, 56, 57]

(+) Ameloblasts [56, 57] (−) Ameloblasts [57]; (+)
M2H4, ALC [56]

Odontoblasts (+) Odontoblasts [57] (−) Odontoblasts [44, 56,
57]

(+) Odontoblasts [56, 57] (−) Odontoblasts in vivo
[57]; (+) M2H4, ALC
[56]

(+) MO6-G3
odontoblasts [16, 88]

(+) MO6-G3
odontoblasts [16, 88]

Pulp cells (+) MRPC1 [48]

(−) Human primary pulp
cells differentiated into
odontoblasts [76]

(−) Human primary pulp
cells differentiated into
odontoblasts [76]

(−) Human primary pulp
cells differentiated into
odontoblasts [76]

(+) Human primary pulp
cells differentiated into
odontoblasts [76]

(+) Human primary pulp
cells differentiated into
odontoblasts [76]

(−) Mouse germ cells
[60]

(−) Whole teeth, M2H4,
ALC [56]

(+) positive expression, (−) negative expression, (±) non-consolidated result
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hyperphosphaturia, and appropriate increase in vitamin D se-
rum levels. Bone histology analysis of Slc34a1 knockout mice
revealed poorly developed metaphyseal trabeculae and retard-
ed secondary ossification at 4 weeks of age [6]. However, this
phenotype was reversed by 16 weeks of age, revealing an age-
dependent adaptation upon loss of Slc34a1 in mice [6].
Interestingly, despite the low phosphate serum levels, no signs
of persistent rickets could be seen in this mouse model [6, 38],
consistent with the appropriate rise in vitamin D serum levels
[11]. Moreover, an adequate phosphate supply was shown to
ameliorate the bone mineralization defects [46], a finding that
argued against a local role of Slc34a1 in bone in the observed
skeletal phenotype and is consistent with the absence of pub-
lished report describing Slc34a1 expression in osteoblasts and
chondrocytes in vivo. It remained possible however that the
observed bone phenotype in the Slc34a1 knockout mouse
could originate from an osteoclast malfunction due to
Slc34a1 deletion in these cells [29, 30, 38]. To clarify this
possibility, Albano et al. investigated the expression of
Slc34a1 during osteoclast differentiation, assessed the impact
of Slc34a1 deletion on osteoclast differentiation and resorp-
tion in vitro, and studied the structural bone parameters in
Slc34a1 KO mice [2]. Their functional study concluded that
the Slc34a1 Pi transporter has no role in the differentiation and
function of osteoclasts, a result consistent with the very low
expression of Slc34a1 in osteoclasts compared to the Pi trans-
porters of the Slc20a family [2].

In humans, the first reported mutation of SLC34A1 gene
was observed in a cohort of patients with urolithiasis or bone
demineralization and persistent idiopathic hypophosphatemia
[62]. Although this first observation was subsequently contro-
versial [45, 52, 82], many other mutations of SLC34A1 have
now been discovered by independent laboratories [84] and
linked to autosomal recessive hypophosphatemic rickets with
renal Fanconi’s syndrome [51], idiopathic infantile hypercal-
cemia and nephrocalcinosis [67], nephrocalcinosis and kidney
stones [22, 24, 52], or mixed syndromes [25]. Sotos syn-
drome, characterized by learning disorders, facial dysmorphia,
overgrowth, hypercalcemia, and nephrocalcinosis, was asso-
ciated with increased deletions of the SLC34A1 gene [37].
Although in most cases patients have skeletal abnormalities,
it is difficult to attribute the origin of these defects either to low
levels of circulating Pi or to a lack of expression of SLC34A1
specifically in bone. In addition, skeletal abnormalities found
in patients with Fanconi syndrome are persistent and severe,
while they are transient in the Slc34a1 knockout mice, sug-
gesting differences between humans and mice in the mainte-
nance of bone homeostasis [7].

Slc34a3

Slc34a3 knockout mice exhibit hypercalcemia, hypercalci-
uria, and increased serum 1,25-dihydroxyvitamin D levels,

together with no hypophosphatemia, hyperphosphaturia, or
renal calcification. Accordingly, they have so sign of rickets
or osteomalacia [71]. In contrast to the relative benign effects
of Slc34a3 disruption in mice, mutation of the Slc34a3 gene in
humans causes hereditary hypophosphatemic rickets with hy-
percalciuria (HHRH) [8, 34, 47]. This autosomal recessive
disorder is character ized by hypophosphatemia,
hyperphosphaturia, increased serum 1,25-dihydroxyvitamin
D levels, hypercalciuria, rickets, and osteomalacia. These ob-
servations suggest that Slc34a3 has an important role in renal
Pi reabsorption and bone mineralization in humans. Segawa
et al. compared the biochemical findings in Slc34a1, Slc34a3,
and double Slc34a1/Slc34a2 null mutant animals to assess the
relative importance of each transporter to the phenotype [70].
Interestingly, mice that were deleted from both Slc34a1 and
Slc34a3 exhibited severe hypophosphatemia, hypercalciuria,
and rickets, similar to that seen in HHRH in humans.
Altogether, this suggested that in mice, Slc34a1 and Slc34a3
have different roles in the regulation of serum Pi levels and
bone mineralization, while they may functionally interfere in
humans. Finally, it is important to note that a high Pi diet
reversed the bone abnormalities found in the double null an-
imals [70], as it is the case in HHRH patients, arguing against
a local role of the Slc34a1 and Slc34a3 transporters in the
skeletal phenotype.

Slc34a2

The wide range of tissue expression of Slc34a2 [26, 27, 32,
80, 90] probably explains that its deletion in mice leads to
embryonic lethality at mid-gestation [73]. Conditional invali-
dation of Slc34a2 confirmed its role in the intestine [65], while
homozygous Slc34a2 loss-of-function mutations in humans
led to pulmonary alveolar microlithiasis, without effect on Pi
homeostasis [20, 33]. This contrasts sharply with the effect of
Slc34a2 disruption in mice and suggests that, similarly to
Slc34a1 and Slc34a3, divergent functions for Slc34a2 proba-
bly exist in humans and mice. To date, no report has illustrated
a role of this transporter in the development or mineralization
of teeth or skeleton in vivo. In particular, given the strong and
specific expression of Slc34a2 in the tooth, this transporter
could play a pivotal role in this tissue and it would therefore
be relevant to study its functionality in future studies using
appropriate tissue-specific knockout animal models.

Discussion and future directions

Local phosphate versus circulating phosphate: what
role for Slc34 Pi transporters?

Most of the skeleton develops through a process called endo-
chondral ossification during which proliferative chondrocytes
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of the growth plate differentiate into hypertrophic
chondrocytes, which subsequently undergo apoptosis and
are replaced by mineralized bone [50, 59]. It is known that a
decrease in circulating Pi leads to defects in apoptosis of hy-
pertrophic chondrocytes, resulting in enlargement of the late
hypertrophic chondrocyte layer and, consequently, defective
bone mineralization [1, 42, 55, 64]. This is a major and com-
mon feature of hypophosphatemic disorders such as heredi-
tary vitamin D-resistant rickets, X-linked hypophosphatemia,
or HHRH [79] but is also seen in wild-type mice fed with low
Pi diets [42, 64].

While controlled circulating Pi levels are essential to proper
bone mineralization, it remains to be shown whether bone
mineralization depends upon the expression of identified Pi
transporters in skeletal tissues. Indeed, as discussed above, the
expression of Slc34 transporters is very low, or even not
shown, in skeletal tissues. Experiments have also shown that
feeding Slc34a1 knockout or Slc34a1/Slc34a3 double knock-
out mice with appropriate Pi diets rescued their bone pheno-
type [46, 69, 70], consistent with the absence of role of these
transporters in providing Pi locally for mineralization pur-
poses. It is therefore plausible that Pi requirements for bone
mineralization are determined both by Slc34 Pi transporters
expressed in renal and intestinal tissues (therefore controlling
serum Pi availability) and by Pi transporters locally expressed
in skeletal tissues (controlling Pi entry into mineralizing cells).
In this context, it should be recalled that the identified Pi
transporters belonging to the type I, II, or III families are
low-capacity transporters, with a Km for Pi close to 0.1 mM.
This contrasts with the high local concentrations of Pi at the
vicinity of mineralizing cells, which can be estimated to rep-
resent four to five times the concentration of Pi found in serum
(i.e., 6–8 mM) [3, 18, 36]. Under these conditions, Pi trans-
porters from the type I, II, or III families would be maximally
active at Pi values well below those found extracellularly in
mineralizing bone, without however being able to transport
the significant quantities of Pi required for mineralization.
High-capacity Pi transporters with a Km for Pi closer to the
extracellular Pi concentrations found in the skeleton would
indeed be more relevant for this task. Interestingly, the exis-
tence and activity of such transporters have been widely de-
scribed in early studies in kidney samples [10, 63, 77, 78, 85].
The question therefore remains whether such high-capacity
component of Pi transport could exist in bone or teeth and
mediate the bulk of Pi transport needed during mineralization
processes. Alternatively, a role for locally expressed Pi trans-
porters in bone may not be mandatory, since cell-independent
biomineralization mechanisms have been described [12, 86],
as discussed above.

While current knowledge does not provide strong evidence
for a significant role of Slc34 Pi transporters in bone mineral-
ization mechanisms, the marked and specific expression of
Slc34a2 in early and late maturation-stage ameloblasts does

suggest a role for this transporter in this tissue [19]. While the
authors of this study suggest that the localization of Slc34a2
may indicate that Pi and sodium are excreted in the enamel
space rather than transported in the ameloblast, this hypothesis
requires that the orientation of the Slc34a2 protein in the mem-
brane be inverted [19, 43]. In any case, the intriguing putative
role of Slc34a2 in tooth is worth exploring and may help to
understand how enamel is formed in vivo [74].

Final words

The technical investigation of skeletal and dental physiology
is complex for a number of reasons. The cells of these two
mineralized tissues are difficult to access, while the availabil-
ity of relevant cell lines is very limited, especially for osteo-
clasts and osteocytes, the mature form of osteoblasts [13].
Therefore, although many major advances have been made
recently in the understanding of biomineralization mecha-
nisms, knowledge of Pi transport entities, especially Slc34
transporters, in mineralized tissues has been primarily descrip-
tive rather than experimental-based. Yet, this knowledge
would offer important opportunities to better understand bio-
mineralization mechanisms and perhaps propose alternative
therapeutic strategies to treat devastating consequences of
poor regulation of mineralization mechanisms, leading for in-
stance to kidney stones, osteoarthritis or vascular calcification
[39]. However, it should be kept in mind that since there is
significant species variability in physiological Pi transport
functions, as summarized above, human studies are mandato-
ry for the application of knowledge from animal models to
human physiology and pathophysiology. And since several
different mechanisms are involved in biomineralization, the
respective role of each of the Pi transporter should be clarified
in establishing their functions in a certain tissue or at a certain
stage of the mineralization process before considering thera-
peutic applications. This would require, at a minimum, to
generate appropriate animals models of the currently known
Pi transporters, explore the possibility that other components
of Pi transport may exist and have important local roles in
biomineralization, and assess their roles in biomineralization
in humans.
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