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ABSTRACT

Despite recent advances in high-risk neuroblastoma therapy, the prognosis for patients remains poor. In
addition, many patients suffer from complications related to available therapies that are highly
detrimental to their quality of life. New treatment modalities are, thus, urgently needed to further improve
the efficacy and reduce the toxicity of existing therapies. Since antibodies specific for O-acetyl GD2
ganglioside display pro-apoptotic activity against neuroblastoma cells, we hypothesized that combination
of immunotherapy could enhance tumor efficacy of neuroblastoma chemotherapy.

We demonstrate here that combination of anti-O-acetyl GD2 monoclonal antibody 8B6 with topotecan
synergistically inhibited neuroblastoma cell proliferation, as shown by the combination index values.
Mechanistically, we evidence that mAb 8B6 induced plasma cell membrane lesions, consistent with
oncosis. Neuroblastoma tumour cells treated with mAb 8B6 indeed showed an increased uptake of
topotecan by the tumor cells and a more profound tumor cell death evidenced by increased caspase-3
activation. We also found that the combination with topotecan plus monoclonal antibody 8B6 showed a
more potent anti-tumor efficacy in vivo than either agent alone. Importantly, we used low-doses of
topotecan with no noticeable side effect. Our data suggest that chemo-immunotherapy combinations
may improve the clinical efficacy and safety profile of current chemotherapeutic modalities of
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neuroblastoma.

Introduction

Neuroblastoma (NB) is a cancer of the sympathetic nervous
system derived from primordial neural crest cells." It is charac-
terized by a highly heterogeneous clinical behavior, ranging
from spontaneous regression to rapid progression and patient
death. High-risk NB occurs in half of all patients and is associ-
ated with metastasis, amplification of the MYCN oncogene,
and an unfavorable prognosis.” Despite intensive multi-modal
treatment, recent developments in immunotherapy and inclu-
sion of novel targeted drugs in clinical trials, the prognosis of
children with high-risk neuroblastoma is still poor, with a
median 5-year overall survival between 50 and 70%.>* More-
over, available therapies remain highly detrimental to patients’
quality of life.”” For example, the anti-GD2 therapeutic anti-
body dinutuximab often causes dose-limiting side effects, such
as severe pain during and after the infusion.® This on-target
toxicity is related to the expression of GD2 on normal tissues
such as peripheral nerve fibers.” In addition, many patients

with chemo-sensitive disease who survive suffer from substan-
tial therapy-related toxicities that result in poor long-term
health outcomes for survivors.”” There is thus an urgent need
to further improve the efficacy and lessen the toxicities of neu-
roblastoma therapies.

Our group focuses on immunotherapeutic strategies target-
ing the O-acetylated form of GD2 (OAcGD2), which we
believed could reduce the acute toxicities currently associated
with anti-GD2 therapeutic antibodies. Significantly, anti-
OAcGD?2 antibodies do not bind to peripheral nerves unlike
anti-GD2 therapeutic antibodies.'® In addition, mAbs specific
for OAcGD2 do not induce pain sensitization in rats contrast
to dinutuximab while presenting potent anti-neuroblastoma
activity in vivo.'" The mechanisms by which anti-OAcGD2
mAbs induce tumor regression in vivo are thought to involve
complement-dependent cytotoxicity (CDC), antibody-depen-
dent cell cytotoxicity (ADCC), and induction of a programmed
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cell death with attributes of apoptosis.'"'* Interestingly, this
latter property could be applied to enhance the susceptibility of
neuroblastoma cells to cytotoxic anti-cancer drugs for a better
control of disease while reducing chemotherapy dosage and
side effects.

Here we investigated whether the anti-OAcGD2 mAb 8B6
could serve as a sensitizing agent against neuroblastoma cells. For
this purpose, we tested topotecan, a topoisomerase I inhibitor, used
in the treatment of neuroblastoma.'” The objective of the study was
to delineate the mechanism(s) by which mAb 8B6 could sensitize
neuroblastoma cells against cytotoxic drugs since this may lead to
rational development of therapeutic clinical trials.

Results

Treatment with topotecan does not affect OAcGD2
expression on neuroblastoma cells

Previous studies showed that GD2 expression—the precursor
of OAcGD2—can be altered in neuroblastoma cells upon expo-
sure to chemotherapeutic drugs.'*'”> Thus, we first tested if
exposure to topotecan would affect the expression level of anti-
OAcGD2 in neuroblastoma cells. To this end, we treated tumor
cells with topotecan for 48 hours before studying OAcGD2-
expression by flow cytometry analysis, as described in Material
and Methods Section. As shown in Fig. 1A, the level of mAb
8B6 binding on either NXS2, IMR5, LAN1, or LAN5 cells
remained mostly unchanged after 48-hour incubation with top-
otecan. We also evaluated OAcGD?2 expression after topotecan
chemotherapy in vivo using the NXS2 mouse neuroblastoma
experimental liver metastasis model. After NXS2 cells injection,
mice were treated with topotecan as described in the Material
and Methods section. Twenty-eight days after tumor cells inoc-
ulation, we collected NXS2 liver metastasis samples for
OAcGD2 expression analysis. Using an immunoperoxydase
assay performed with biotinylated-8B6 mAb specific for
OAcGD2, we found that biotinylated-8B6 mAD stained NXS2-
tumor sections similarly in mice treated with topotecan
(Fig. 1B). The isotype-matched irrelevant antibody was nega-
tive (Fig. 1B). Similar observations were found in human IMR5
neurobalsoma xenografts (Fig. S1). Taken together these results
show that topotecan treatment does not affect mAb 8B6 bind-
ing level on tumor cells, and suggest mAb 8B6 may be used in
combination with chemotherapeutic drugs against NB cells.

Anti-OAcGD2 mAb 8B6 synergistically enhances the
inhibitory effects of topotecan on neuroblastoma cell lines

To test whether mAb 8B6 could enhance topotecan chemo-
therapy, we next characterized the effects on tumor cell via-
bility of mAb 8B6 in combination with topotecan in four
different neuroblastoma cell lines, using an MTT assay.
First, exposing of NXS2, IMR5, LANI1, or LAN5 cells to
topotecan alone resulted in a concentration-dependent inhi-
bition of cell viability (Fig. 2A). Next, we combined topote-
can in six combinational equipotent ratios based on the
EDs, values in order to assess effect on cell viability and
obtain the combination index values by the method of
Chou and Talalay.'® Addition of mAb 8B6 enhanced the

anti-proliferative effect of topotecan in each studied cell
line. As shown in Fig. 2, the combination dose-response
curves shifted towards sensitive side of the graph indicating
that combination of mAb 8B6 with topotecan was more
efficient in inhibiting neuroblastoma cell viability. More-
over, the calculated ED5, values of topotecan were signifi-
cantly lower in the presence of mAb 8B6 (p < 0.05,
Table 1). Finally, we calculated the combination index (CI)
values to characterize the effects of the combination tested
(Fig. 2B). We found that median combination index values
were significantly less than 1.0 (p < 0.05), indicating a syn-
ergistic interaction (Fig. 2). We observed the strongest syn-
ergy in IMR5 cells with CI values < 0.5. Similarly, synergy
was attained in LANI1 cells (CI values: 0.4-0.6). In NXS2
and LANS cells synergy was observed at EDsy and ED5 (CI
values: 0.4-0.8), while an additive effect was attained at
EDy, with CI values of approximately 1. We concluded that
mAb 8B6 has the potential as an adjuvant therapeutic
agent, enabling use of lower doses of topotecan in current
clinical use.

Increased-topotecan sensitivity induced by anti-OAcGD2
mAb 8B6 involves loss of membrane integrity

We went on to investigate the mechanism by which mAb 8B6
sensitizes neuroblastoma cells to topotecan. It was proven that
anti-ganglioside mAbs could induce an alternative form of pro-
grammed cell death through oncosis.'”'® Features of oncosis
include cell swelling, membrane damage associated with
increased cell permeability, and cell death.'”' In our previous
work, we observed under light microscopy that tumor cells
treated with mAb 8B6 aggregated and underwent morphologic
changes, which was followed by cell death.'? Based on this evi-
dence, we investigated here an oncosis-like mechanism as the
probable mAb 8B6 mode of action in tumor cell sensitization
to topotecan. Thus, we examined the cell surface of neuroblas-
toma cells for structural changes after mAb treatment with
scanning electron microscopy (Fig. 3). Strikingly, neuroblas-
toma cell plasma membranes displayed numerous pores in the
presence of anti-OAcGD2 mAb 8B6 (Fig. 3). These effects were
not seen when the cell were treated with the control antibody
(Fig. 3). Next, we carried out a flow cytometry assay to study
topotecan incorporation in the mAb-treated cells. Remarkably,
the analysis of MFI ratios of intracellular topotecan fluores-
cence indicated that topotecan uptake was significantly greater
in the mAb 8B6-treated neuroblastoma cells than in the control
cells (Fig. 4A, and Fig. S2). Taken together, these data indicate
that mAb 8B6-treated cells display cell membrane injuries that
result in increased cell permeability to topotecan. In parallel,
we conducted immunoblots analysis to study the cleaved cas-
pase-3 level in the tumor cells treated with both mAb 8B6 and
topotecan (Fig. 4B). As shown in Fig. 4B, the increased intracel-
lular topotecan uptake induced by mAb 8B6 correlated with a
gain of cleaved caspase-3 level in all studied neuroblastoma cell
lines, indicating a more profound cell death. These findings
suggest that alteration of the tumor cell plasma membrane per-
meability as a mechanism for the synergism between mAb 8B6
and topotecan combination.
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Figure 1. Exposure to topotecan does not affect OAcGD2 expression in neuroblastoma cells. (A) Binding activity of anti-OAcGD2 mAb 8B6 on NXS2, LAN1, LAN5, and IMR5
neuroblastoma cell lines as indicated, before (empty column) and 48 hours (black colunm) after incubation with topotecan. The geometric mean fluorescence intensities
(MFIs) of tumor cells stained with mAb 8B6 were normalized to the MFIs of tumor cells stained with the isotype-control antibody. Results are presented as mean + SEM
(n = 3, independent experiments) of MFI ratios as described in the material and methods. (B) Representative NXS2 liver metastasis section stained with biotinylated-8B6
mAb using an immunoperoxidase assay of either vehicle-treated mice (2) or topotecan-treated mice (3). Tumors were collected on day 28 after NXS2 cells inoculation
and topotecan chemotherapy was performed as described in the Material and Methods section. Strong immunostaining with biotinylated-886 mAb was observed on neu-
roblastoma cells in each treatment regimens. The control biotinylated-antibody was used as a negative control (1). Three NXS2 tumors from 3 different mice in each

experimental group were tested with the same result. Scale bar = 100 xm.

Anti-OAcGD2 mAb 8B6 enhances anti-tumor activity
of topotecan in vivo

To extend our observations obtained in vitro, we next evaluated
the potential therapeutic effects of the combination of mAb 8B6
and topotecan combination in vivo. We performed the
in vivo studies using the mouse NXS2 neuroblastoma

experimental liver metastasis that we previously used to evaluate
the anti-tumor activity of mAb 8B6 as a single agent.'®'" Topo-
tecan was given at low doses as previously reported in the litera-
ture to minimize related side effects.**** Three day after iv.
NSX2 tumor cells inoculation, ten mice were assigned to treat-
ment with single agent, or combination of mAb 8B6 and
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Figure 2. Anti-OAcGD2 mAb 8B6 synergizes with topotecan in vitro. The neuroblastoma cell lines IMR5, LAN1, LAN5, and NXS2 were treated either singly, or with combi-
nation of topotecan and mAb 8B6, as indicated, and the MTT viability assay was carried out after 72 hours. (A) Dose-response curves and (B) combination index plots.
Dose-response curves shown are representative of three independent replicates. Percentage survival values were transformed into Fraction affected (Fa) values and used
to calculate combination index (measure of synergy, additivity and antagonism) using Compusyn software. In the combination index plots, data are presented as mean
=+ SEM for three independent replicates. Results showed that mAb 8B6 had a synergistic effect with topotecan (Cl < 1).

chemotherapeutic drug (Fig. 5A). On day 28 after tumor cells
inoculation, we determined the liver weight after mice euthana-
sia. The dose of mAb 8B6 (cumulative dose = 150 g) that we
used in this study yielded a significant reduction of NXS2 liver

metastasis, as indicated by the liver weight, compared to the
vehicle treated mice. The mean liver weight in mAb 8B6-treated
group was 1.5 & 0.15 g compared to 2.5 £ 0.18 g for the vehi-
cle-treated group (p< 0.05, Fig. 5B). The specificity of mAb 8B6



Table 1. Characterization of neuroblastoma cell lines and ED50 of topotecan used
as a single agent or in combination with mAb 8B6.

EDs, of topotecan(uM) ®

MYCN
Cell line Amplification ~ Without mAb 886 ~ With mAb 8B6  p value
NXS2 No 3 47403 1.240.15 <001
IMR5 Yes > 0.010 4 0.001 0.005 +0.001 < 0.01
LAN1 Yes *° 75+12 19402 < 0.01
LANS5 Yes ¢ 0.024 + 0.007 0.005 4+ 0.001 < 0.01

EDs, were calculated using CompuSyn software as described in the Material and
Methods Section. Data represent the mean of 3 independent experiments &+ SEM.
PAnti-OACGD2 mAb 886 was combined with topotecan at the concentration of
40 pg/ml.

therapy was demonstrated, since treatment with an equivalent
amount of non-specific antibody was completely ineffective
(mean liver weight = 2.4 £ 0.17 g, p > 0.05 compared to vehi-
cle-treated mice, Fig. 5B). The combination of topotecan
(0.36 mg/kg, i.p., five times weekly for 1 week) plus mAb 8B6
significantly reduced liver weight (0.9 & 0.03 g) compared to
either topotecan (1.22 £ 0.09 g), or mAb 8B6 used as single
agent (p < 0.05, Fig. 5B).

Weight loss is used as a sensitive marker for health monitor-
ing> We therefore performed a parallel analysis of the body
weight over the treatment period. We observed no loss of body
weight, suggesting no treatment-related toxicity in the mice
treated with mAb 8B6, topotecan, or topotecan + mAb 8B6
(Fig. 5C).

ONCOIMMUNOLOGY e1373232°5

To exclude any topotecan-induced immunomodulatory effect
that may enhance anti-tumor activity of mAb 8B6 in vivo, we
further studied the therapeutic performance of the combination
regimen in severe immunodeficient NGS mice bearing subcuta-
neous IMR5 tumors. Therapy started 7 days after subcutaneous
injection of IMR5 cells, when tumors had reached an average
size of 50 + 2.5 mm® (Fig. 6A). Mice were treated with either
mAb 8B6 (150 g, iv., day 7 and day 11), topotecan (0.36
mg/kg i.p., day 7-11) or combination of mAb 8B6 and topote-
can. We monitored the tumor volume and the health of the
mice during the course of the experimentation. The event result-
ing in mouse euthanasia was disease progression, defined as the
tumor volume reaching above 1 cm’. Monotherapy with either
mADb 8B6 or topotecan led tumor growth retardation compared
with the control groups treated with either vehicle or control
antibody (Fig. 6A). This resulted in a substantial improved
event-free survival (EFS) of mice treated with either topotecan or
mAb 8B6, as single agent, compared to the control mice (median
EFS of 21 days for the vehicle-treated group, 22 days for the con-
trol antibody-treated group, 26 days for topotecan-treated mice
and 29 days for mAb 8B6-treated mice, Fig. 6B). Interestingly,
the combination of mAb 8B6 and topotecan significantly delayed
tumor growth compared to either mAb or topotecan given alone
(Fig. 6A). When we compared the tumor sizes between the
monotherapy arms and the combination group, the differences
were statistically significant (p < 0.05, mAb 8B6 vs. combination
therapy; p < 0.01, topotecan vs. combination therapy) at differ-
ent time points (from day 15 to day 26, Fig. 6A). Moreover,

No treatment

NXS2

10 pM

IMR5

LAN 1

LAN 5

Control IgG

mAb 8B6

10 Lin

Figure 3. Morphological changes induced by mAb 8B6. Analysis by scanning electron microscopy showed morphological changes in neuroblastoma cells treated with
mAb 8B6. NXS2, IMR5, LAN1, and LAN5 neuroblastoma cells were incubated with either control antibody or mAb 8B6 at 37°C for 30 minutes. Electron micrographs were
then taken. Membrane pores were seen in all studied neuroblastoma cells treated with mAb 8B6 displayed pores. Similar results were observed in three independent
experiments. Membrane lesions are indicated with white arrows. Horizontal rods correspond to the scale bar, as indicated.
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IMRS5, LAN1, and LAN5 neuroblastoma cells were incubated with topotecan in the presence of either mAb 8B6 or control IgG for 30 minutes. After incubation, intracellular
fluorescence of topotecan was analyzed by flow cytometry. The geometric mean fluorescence intensities (MFls) of the different experimental conditions were normalized
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cated. (B) The cells in (A) were also assessed by Western blot analysis for caspase-3 activation detection. The right panels show representative images of immunoblots of
cleaved caspase-3. Elevated level of cleaved caspase-3 was seen in all neuroblastoma cells treated with mAb 8B6 + topotecan, as indicated. Similar results were observed
in three independent experiments. Data presented are mean + SEM of triplicate experiments. * p < 0.05, ** p < 0.01, ™" p < 0.001.

treatment with combination of mAb 8B6 and topotecan had the
greatest impact on animal survival with a median EFS of
39.5 days (p < 0.05, mAb 8B6 vs. combination therapy; p <
0.01, topotecan vs. combination therapy, Fig. 6B). No significant
weight loss was observed in mice treated with topotecan or mAb
8B6 alone or in combination throughout the course of the study
(Fig. 6C). These observations suggest that the combination with
low-schedule topotecan plus mAb 8B6 presents a more potent

anti-tumor efficacy in vivo than either agent alone, without
detectable toxicity.

Discussion

Given the tissue distribution pattern of OAcGD2, specific
mAbs provide a potential opportunity to develop safer immu-
notherapeutic  strategies than anti-GD2  therapeutic
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antibodies.'” Taking into consideration that anti-OAcGD2
mAb 8B6 promotes tumor cell death without the involvement
of the immune system,'” we examined here the effect of anti-
OAcGD2 mAb in combination with topotecan, one clinically
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Figure 6. In vivo effect of mAb 8B6 -+ topotecan on tumor growth and
event-free survival in IMR5 xenograft model. NSG mice bearing (A) human neuro-
blastoma IMR5 xenograft were treated with vehicle (PBS, i.p.), topotecan alone
(0.36 mg/kg i.p.), control IgG alone (150 g, i.v.), mAb 8B6 alone (i.p.), or topotecan
+ mAb 8B6, as indicated. Administration of mAb 8B6 or control antibody treatment
started on day 7 after IMR5 cells inoculation and was repeated once on day 11. Top-
otecan or PBS treatment were started on day 7 and given 5 consecutive days.
Tumor growth was monitored and tumor volumes were calculated. Mean tumor
volume + SEM of each treatment group (PBS group, 9 mice; all other groups, 10 mice)
are depicted (* p < 0.05 for mAb 8B6 against mAb 8B6 + topotecan, ** p < 0.01 for
topotecan against mAb 8B6 + topotecan), as indicated. (B) Event Free Survival Kaplan-
Meyer curves were analyzed by log-rank Mantel-Cox test, where p < 0.5 was considered
significant. The p values reported refer to the combination treatment compared to vehi-
cle / control antibody / topotecan / mAb 8B6. * p < 0.05, ** p < 0.01, ™ p < 0.001.
() Mean weight for each treatment group, as indicated. Mean weight of mice on day 0
was defined as 100% weight. Weight in each group remained stable for the period of
treatment. Data are presented as the mean £ SEM.

relevant chemotherapeutic drug used against neuroblastoma.
The rationale for combining immune therapies with chemo-
therapy to improve neuroblastoma patients outcomes is sug-
gested by the finding that anti-GD2 mAb 14G2a sensitizes
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neuroblastoma cells to chemotherapeutic agents in killing neu-
roblastoma cells in vitro,”” based on its ability to induce apo-
ptosis in tumor cells.*® Yet, the identification of the
mechanisms involved at the cellular level remains necessary to
define the best chemotherapeutic agent to be used in such com-
bination. The study of the importance of GD2 in tumor cell
apoptosis remains however challenging, partly because anti-
GD2 antibodies cross-react with OAcGD2.>>*° Despite much
effort to elucidate the apoptotic pathways induced by anti-GD2
mADb, few mechanisms have been yet identified to date.’" Here,
we present findings that delineate a new mechanism of action
in which anti-OAcGD2 mAbs induce the loss of tumor cell
membrane integrity resulting in an increased cytotoxic drug
uptake and a more potent anti-neuroblastoma cytoxicity. These
findings represent a new potential therapeutic application of
mAbs specific for OAcGD2 ganglioside for the treatment of
patients with neuroblastoma. In particular, we used topotecan,
a clinically relevant chemotherapeutic drug."

In view of previous reports that treatment of neuroblas-
toma cells with drugs is accompanied by a decrease in cell
content of GD2,'*'* we first analyze the OAcGD2 expres-
sion-level upon topotecan treatment. Our data demonstrate
that both in vitro and in vivo exposure of neuroblastoma
cells to topotecan does not result in the loss of OAcGD2
expression in these cells. These data provide a strong read
out for topotecan combination therapy with anti-OAcGD2
immunotherapy.

Having found that OAcGD2 expression was not affected by
topotecan treatment in neuroblastoma cells, we next deter-
mined whether the combined treatment would result in a
higher cytotoxicity towards neuroblastoma cells. In line with
the previous work of Kowalczyk et al.,”” we evidenced that the
combination of mAb 8B6 plus topotecan significantly enhanced
the anti-neuroblastoma activity of either topotecan or mAb 8B6
alone. We also found that the calculated combination index
values at EDsy, ED;5s and EDg, were < 1, demonstrating a syn-
ergistic effect.'® Of note, we used three human neurobalstoma
cell lines with MYCN gene amplification, a genetic factor asso-
ciated with poor outcome and that is frequently over-expressed
in neuroblastoma tumors.”

Mostly, our findings reveal here a new cell death mechanism
by which mAb 8B6 promotes tumor cell chemosensitization. We
reported earlier that mAb 8B6 induces tumor growth inhibition
in vitro with feature of apoptosis, included caspase-3 activation.
"2 We also suggested that this activity could contribute signifi-
cantly to its clinical performance, based on our earlier data
obtained in immune compromised mice bearing neuroblastoma
xenografts.'” Our previous observations also showed that the cell
death induced by mAb 8B6 was associated with cell swelling, as
evidenced by light microscopy.'? This phenomenon prompted us
to investigate the implication of an oncosis-like mechanism, as
suggested with anti-glycolyl-GM3 mAbs.'”'® Here, we brought
new data indicating that OAcGD2 mAb-treated cells have
increased membrane pores using scanning electron microscopy.
More importantly, we demonstrated, here, that the pore forma-
tion in the plasma membrane led to a boost of topotecan incor-
poration in the mAb 8B6-treated tumor cells, based on the
measure of intracellular fluorescence of topotecan using flow
cytometry. This correlated with a gain of caspase 3-activation, as

evidenced by Western blot analysis. This is the first report indi-
cating that oncosis-like cell death enhances cytotoxic drugs
uptake and drug-sensitization in tumor cells. Noteworthy, onco-
sis has been shown to be caspase 3-independant.*® This observa-
tion contrasts with our Western blot analysis demonstrating the
induction of caspase 3-activation upon binding of mAb 8B6 on
target tumor cells. However, a recent report suggested that anti-
ganglioside mAbs can trigger cell death through multiple mecha-
nisms.”' Thus, it is possible that mAb 8B6 induces a bimodal
cell death program upon binding to its target antigen on the cell
surface. In line with this hypothesis, we showed earlier that the
tumor cell death induced by mAb 8B6 was partially caspase 3-
dependant. ' Still to be characterized is the nature of the mecha-
nism that triggers the pore formation induced by mAb to
OAcGD2. The available data on the molecular mechanism(s)
responsible for the appearance of these pores during oncosis-like
cell death induced by mAbs remains fairly unknown."”** Eluci-
dating these mechanism of action at the molecular level could,
however, help to designed more potent combination that would
simultaneously target molecular actors involved in the cell death
pathway.

Up until now, in vivo data using anti-ganglioside mAb com-
bined with anti-cancer cytotoxic drugs are limited.** In the light
of our in vitro results demonstrating synergy between mAb 8B6
and topotecan, we sought to determine whether mAb 8B6
would increase the anti-neuroblastoma activity of topotecan
under a low-dosage schedule. We found that the addition of
mAb 8B6 to topotecan demonstrated potent activity against
NXS2 neuroblastoma metastasis in A/J mice and against IMR5
xenografts in immunodeficient NSG mice. These findings cor-
roborate that the anti-tumor effect of topotecan may be
enhanced with mAb 8B6 immunotherapy used in a therapeutic
scenario. Of note, NSG mice lack both innate and adaptive
immunity with loss of B cell, T cell, and NK cell function as
well as reduced macrophage and antigen-presenting cell func-
tion.”” Thus, immune-mediated mechanisms are not a require-
ment for the efficacy of the combination therapy. Yet, we need
to consider the role of mAb 8B6 Fc portion in enhancing topo-
tecan anti-tumor potency in vivo. In addition, immunomodula-
tory effects of topotecan have been demonstrated in preclinical
models at maximal-tolerated dose (MTD).**3® As an unwanted
side effect, MTD-chemotherapy also activates the tumor
stroma. >>*® This activation can promote the growth and sur-
vival of residual cancer cells to support recurrence and metasta-
sis.>>*0 The impact of the stroma on cancer resistance can be,
however, tempered by lowering the dosage of chemotherapeutic
drug.*! In agreement with this, low-dose application of topote-
can was lately identified as an inducer of a tumor-inhibiting
senescence-associated secretory phenotype in neuroblastoma
cells.*? Furthermore, treatment-associated side effects are likely
to be reduced under low-dose drug schedule, as known as met-
ronomic therapy.*® In rapport with this, we studied weight loss
as an indicator for systemic tolerability of each tested regi-
mens.”> Our data suggest that the combination regimen was
well tolerated, although specific effects in our mouse model
cannot predict all patient-observable post antibody infusion
effects such as chill, headache, or nausea. Considering the syn-
ergistic interactions between mAb 8B6 and topotecan evi-
denced here, anti-OAcGD2 antibodies could be combined in



clinic with lower than currently used doses of chemotherapy, to
try to reduce dose-limiting toxicities. This is particularly excit-
ing, given that the immunomodulatory effects of chemothera-
peutic drugs are demonstrated at metronomic dosage.***’
Further studies remain needed to characterize the immune
mechanisms, and to elucidate the pharmacodynamic interplay
that might be involved in the synergistic interaction between
anti-OAcGD2 mAb immunotherapy and topotecan.

To conclude, anti-OAcGD2 mAbs may be applied as an
oncosis-inducing reagent to sensitize neuroblastoma cells to
cytotoxic anti-cancer drugs. Our findings illuminate further
work on clinical evaluation of anti-OAcGD2 mAbs in combi-
nation with topotecan, as a novel therapeutic approach to
improve survival and/or reduce toxicity of patients with
neuroblastoma. In this regard, a recent phase 2 study published
during the revision of the present paper, showed that irritocan-
temozolomide in combination with the anti-GD2 antibody
dinutuximab is a exiting new therapeutic option for refractory
or relapse neuroblastoma.*® The irrinotecan-temozolomide-
dinutuximab treatment improved the 1-year survival rates by
51 points compared to the irrinotecan-temozolomide therapy.
In this context, elucidation of the potential mechanisms of
response that occurs in patients merits consideration.

Material and methods
Antibodies and chemotherapeutic drugs

Anti-OAcGD2 mAb 8B6 (IgG2a, kappa) was obtained previ-
ously in our laboratory.”” An isotype-control mAb (DOTA-
IgG2a, kappa) was used as a negative control. The purity of
mAb preparations was verified by SDS-PAGE and size exclu-
sion HPLC analyses as previously described.*” Endotoxin quan-
titation was evaluated using the LAL kinetic chromogenic assay
(Lonza, # 50-650U). Topotecan (Hycamtin®) was obtained
from the pharmacy of the Nantes University Hospital (Nantes,
France).

Antibody biotinylation

Monoclonal antibodies were biotinylated using the EZ-Link
Sulfo-NHS-LC-Biotinyltion kit (ThermoFisher Scientific, #
21327) according to the manufacturer’s instructions. One milli-
gram of mAb was dissolved in 1 mL PBS according to the
instruction kit. After addition of the Sulfo-NHS-LC-Biotin solu-
tion at a molar ratio of 20:1 (biotin:IgG), the reaction mixture
was incubated at 4°C (on ice) for 2 hours, and the biotinylated
product was purified by gel filtration on a Zeba Desalt Spin Col-
umn (provided with the kit). Estimation of biotin incorporation
to either mAb 8B6 or anti-DOTA IgG2a mAb was done using
HABA (4'-hydroxyazobenzene-2-carboxylic acid, provided with
the kit) according to the manufacturer’s instructions.

Cell culture

The mouse neuroblastoma NXS2 cell line was a gift from
Dr. H. N. Lode (Universitatsklinikum Greifswald, Greifswald,
Germany).”* The MYCN-gene amplified human LAN1 and
LAN5 neuroblastoma cell lines were obtained from the
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Children’s Oncology Group Cell Culture and Xenograft
Repository (Philadelphia, PA, USA).*** The MYCN-gene
amplified human neuroblastoma IMR5 cell line was gener-
ously provided by Dr. Santos Susin (Inserm U.872, Paris,
France).”® NXS2 cells were authenticated by IDEXX BioRe-
search

(Ludwigsburg, Germany) and were grown in DMEM
(Gibco, # 21969-035) with 10% heat-inactivated fetal calf
serum (Gibco, # 10220-106), 2 mM L-Glutamine (Gibco, #
25030-024), 100 units/mL penicillin, and 100 pg/mL strepto-
mycin (Gibco, # 15140-122), at 37°C in 5% CO,. IMRS5,
LANI and LAN5 cells were authenticated by Eurofins
Genomics (Ebersberg, Germany) and were grown in RPMI
1640 (Gibco, #31870-025) with 10% heat-inactivated fetal calf
serum (Gibco), 2 mM L-Glutamine (Gibco), 100 units/mL
penicillin, and 100 pg/mL streptomycin (Gibco), at 37°C
in 5% CO,. All cells lines were routinely tested for myco-
plasma spp.

Cell proliferation analysis

Cell viability was measured using the MTT assay,”' using the Cell
Proliferation Kit I (Roche Diagnostic, # 11465 007 001) according
to the manufacturer’s instructions. Tumor cells (IMR5: 1 x 10*
cells; LAN1: 5 x 10° cells; LAN5: 1 x 10" cells; NXS2: 5 x 10
cells) were seeded into 96-well plates in 100 pl of media. The
next day, 50 ul (3 times concentrated) of several topotecan
and/or mADb 8B6 concentrations prepared in 1:2 serial dilutions
were added. After 72 hours, 10 uL of methylthiazole tetrazolium
salt stock solution (provided with the kit) were added and incu-
bated at 37°C for 4 hours. Then, 100 ul of solubilization buffer
(provided with the kit) were added and the plates incubated for
4 hours at 37°C for color development. Absorbance was recorded
at 570 nm against a reference wavelength at 650 nm on a Multis-
kan reader (Thermo Electron, Walthman, MA, USA). Assays
were performed in quadruplicate and experiments were repeated
three times. Percentage survival for each dose was calculated by
multiplying absorbance values with 100 and divided by control
absorbance value. Dose-response curves were analyzed using
CompuSyn software (ComboSyn, Inc, Paranus, NJ, USA) to
determine the effective dose 50 (EDs) values.

Determination of synergy

Topotecan and mAb 8B6 interactions were analyzed for syner-
gistic, additive, or antagonistic effect using the combination
index (CI) method developed by Chou and Talalay.'® To this
end, the effective dose 50 (EDsq) for both topotecan and mAb
8B6 were determined prior to experiment set up, as described
above. Equipotent ratios of the two compounds were prepared
across wide range of concentration and treated the cells in
96-well plate for 72 hours. Percentage survival values were
converted into Fa (Fraction affected) values using the formula
1- (% survival / 100). These values were fed into CompuSyn
software (ComboSyn, Inc, Paranus, NJ, USA) to determine
combination index values (CI = 1, additivity; CI >1, antago-
nism; CI <1, synergism) at ED5,, ED;5 and EDqy.
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Flow cytometric analysis of O-acetyl GD2 expression

Analysis of cell surface OAcGD2-expression on neuroblastoma
cell lines was evaluated by indirect immunofluorescence mea-
sured by flow cytometry. We incubated 5 x 10 cells in 96-well
microplates with either mAb 8B6 or control antibody at 10 ug/
mL for 60 minutes at 4°C in PBS-BSA 1%. Antibody binding
was analyzed after reaction with the fluorescein-isothiocyanate
conjugated F(ab’), fragment of goat anti-mouse IgG (H+L) as
a second antibody (Jackson, Immunoresearch, # 115-096-146)
for 60 min at 4°C. Cell fluorescence was analyzed using a
FACSCalibur flow cytometer (BD Biosciences, San Jose, CA,
USA) and CellQuest Pro software (BD Biosciences). Relative
fluorescence intensities of 10,000 cells were recorded as single-
parameter histograms (log scale, 1024 channels, and 4 decades)
and mean fluorescence intensity (MFI) was calculated for each
histogram. Results were expressed as a MFI ratio calculated by
dividing the flow cytometric MFI value of cells stained with
antigen-specific mAb by the MFI value for the same cells
stained with isotype-matched control mAb. This approach
allows for comparison of multiple test samples within a group
and between different groups.

Scanning electron microscopy

Neuroblastoma cells were incubated with either mAb 8B6 or
control antibody for 30 minutes at 37°C, washed three times
with PBS, and then fixed with 2% glutaraldehyde (Sigma
Aldrich, # G7526) in 0.1 mol/L sodium phosphate buffer (pH =
7.4) at 4°C for one hour. These cells were washed with PBS and
post-fixed for 15 minutes in 1% OsO4 (Sigma Aldrich, # 75633).
Then, they were washed three times with PBS, and dehydrated
through a graded ethanol (VWR Prolabo, # CHESEA043-2.5LP).
Cells were then gold coated for 2 min before analyze by Scan-
ning Electron Microscope (Merlin, Carl Zeiss, Germany). Images
were stored as TIFF files with Adobe Photoshop.

Cellular accumulation of topotecan

Topotecan has a UV excitable chromophore. Therefore topote-
can uptake into neuroblastoma cells was assayed by flow
cytometry using a FACSCalibur flow cytometer (BD Bioscien-
ces, San Jose, CA, USA) and CellQuest Pro software (BD Bio-
sciences) as previously described.’”> Topotecan-derived
fluorescence intensity was analyzed in a histogram bi-paramet-
ric of the log of orange fluorescence (FL2-H) versus the cell size
(FSC-H) after 30 minutes exposure. Mean fluorescence inten-
sity (MFI) was calculated for each histogram. An MFI ratio was
calculated by dividing the flow cytometric MFI value of cells
incubated with mAb 8B6 plus topotecan by the MFI value for
the same cells treated with topotecan alone, and topotecan
intracellular accumulation was expressed as fold increase of the
MFI ratio of the cell treated with topotecan alone. Parallel sam-
ples were incubated with the control antibody as control.

Western blot analysis

Cells (IMR5: 7.5 x 10° cells; LAN1: 5 x 10° cells; LAN5: 8 x
10° cells; NXS2: 8 x 10° cells) were seeded into 6-well culture

plates and treated with mAb 8B6 (40 ug/mL), topotecan
(IMR5: 10 nM; LAN1: 800 nM; LAN5: 10 nM; NXS2: 450 nM)
and the combination of two drugs for 24 hours. Treated cells
were washed twice with ice-cold phosphate-buffered saline,
and then lysed using appropriate amount of lysis buffer
(20 mM Tris-HCI, pH 7.4, 1% Nonidet P-40, 0.25% DOC,
0.15 M Na(l, 0.1% SDS, 1 mM EDTA, phosphatase and prote-
ase inhibitors). Equal amounts of protein (30 pg) were sepa-
rated on  SDS-polyacrylamide gel (INVITROGEN,
Thermofischer Scientific, #NP0335BOX), and electrotrans-
ferred to the polyvinylidene difluoride membrane (PVDF,
Millipore, # IPVH00010). Membranes were incubated with 5%
milk-phosphate-buffered saline for 1 hour, washed with phos-
phate-buffered saline containing 0.1% Tween 20, and then
incubated with antibodies reactive with cleaved caspase 3 (clone
5A1E, Cell Signaling Technology Inc., # 9664) and f3-actin
(Clone C4, Merck Millipore, # 6A2910). Secondary horseradish
peroxidase-conjugated goat anti-rabbit and monoclonal anti-
body and goat anti-mouse (Jackson Immunoresearch #115-
035-006, #111-035-006) were used for detection of bound pri-
mary antibody and bands were visualized by enhanced chemi-
luminescence (GE Healthcare, # RPN 2236).

Mouse neuroblastoma models

Two neuroblastoma cell lines were used to establish murine
tumor models. The mouse NXS2 cell line was used to establish
an experimental liver metastasis model in immunocompetent
A/] mice, previously described by Lode et al’* The human
IMRS5 cell line was used to establish subcutaneous xenografts in
immunodeficient NSG™ mice.*® All experiments were carried
out in strict accordance with the recommendations in the
Guide for the Care and Use of Laboratory Animals of the
French Department of Agriculture (agreement number: APA-
FIS 03479.01). Protocols were approved by the Committee on
the Ethics of Animal Experiments of the Région Pays de la
Loire (CEEA-PdL 06). Mice were housed at the UTE-UN ani-
mal facility (Nantes, France, agreement # C44-278).

Female and male A/] mice (6-8 weeks of age) were obtained
from Envigo (Gannat, France, # 4904F). We inoculated 2.5 x
10° tumor cells by tail vein in PBS. We grouped the mice into
five groups of 10 mice each: 1) vehicle-treated group; 2) control
antibody-treated group; 3) mAb 8B6-treated group; 4) topote-
can-treated group; and 5) topotecan + mAb 8B6-treated group.
Anti-OAcGD2 mAb 8B6 treatment was started at day 3 after
tumor cell injection. Mice received by i.v. injection, twice a
week, 25 ;g mAb for 3 consecutive weeks; (day 3, 7, 10, 14, 17
and 21; total dose = 150 ug). Topotecan diluted in PBS was
given by ip. injection at 0.36 mg/kg daily for 5 consecutive
days (days 10-14). Mice were sacrificed after 28 days post inoc-
ulation, and anti-tumor efficacy was evaluated by liver weight
of the fresh specimen.

Female NSG (7 weeks of age) were obtained from Charles
River Laboratories (L’Abresles, France, JAX™ mice strain #
005557). Subcutaneous xenografts were developed by injecting
subcutaneously 2.5 x 10° IMR5 cells into the right flank of the
mice. Mice with engrafted tumors that reached 50 mm? in size
were randomized into groups of 10 per condition. Tumors
were measured at the initiation of the study and then every



3-4 days using a digital caliper. Tumor volume was calculated
using the formula: (A x B?) x 0.5 in which A is the largest and
B is the shortest dimension. Animals were monitored for body
weight and tumor growth. The studies consisted in the same
experimental groups as described above. Antibody 8B6 or con-
trol antibody treatment (150 pug/mouse) started on day 7 after
IMRS5 cells inoculation by iv. injection and was repeated on
day 12 (total dose 300 ug). Topotecan treatment started on day
7 following tumor cell inoculation by injecting 0.36 mg/kg top-
otecan or PBS control i.p. for 5 consecutive days. The event
resulting in mouse euthanasia was disease progression, defined
as the tumor volume reaching above 1 cm”.

Immunohistochemistry on murine neuroblastoma hepatic
metastasis samples

OAcGD2 expression was analyzed by an immunoperoxidase
assay performed with biotinylated-8B6 mAb on NXS2 neuro-
blastoma liver metastasis upon mice treatment with topotecan
alone as described above. To this purpose, NXS2 tumors grown
in A/] treated-mice were embedded in Tissue Tek-II O.C.T.
(Sakura, # 4583), snap frozen in isopentane in liquid nitrogen
and stored at —80° C. Five micrometer-sections were cut, fixed
in acetone and stored at —80° C until use. Tissue sections were
blocked with Dako Real ™ Peroxidase Block (Dako, # $2023)
for 6 minutes and then rinsed with Dako’s washing buffer
(Dako, # S3306). We then added biotinylated-8B6 mAb onto
the sections diluted in Antibody Diluent (Dako, # $3022) at a
final concentration of 10 ug/mL for 1 hour. After rinsing, the
bound mAb was detected by incubation with Streptavidin-HRP
(Beckman Coulter, # PN IM0309). DAB (Dako, # K3468) was
used as HRP substrate and sections were counterstained with
hematoxylin (CS700) before immunocytological evaluation.
Biotinylated-anti-DOTA mAb was used as a negative control.
Slides were imaged with a nanozoomer (Hamamatsu, Hama-
matsu City, Japan) and images were stored as TIFF files with
Adobe Photoshop. Staining was graded as positive or negative
‘according to the presence or absence of immunoreactivity,
respectively.

Statistical analysis

Statistical analysis was performed using Prism software
(GraphPad Prism Software). Differences between untreated
and treated groups in the in vitro experiments were analyzed
by two-tailed Student’s t test. For in vivo studies, the statistical
significance of either liver weights or tumor volumes of experi-
mental groups of mice was tested by Mann-Whitney test.
Event-free survival (EFS) was defined as the percentage of mice
that survived while on therapy, where survival was defined as
the lack of an “event”. We defined an event as a tumor volume
reaching above 1 cm’, at which point the mice were euthanized
and taken off study. EFS percentages were estimated using the
Kaplan-Meier method and survival curves were compared
using the Log-Rank test. We considered p values of less than
0.05 as significant.
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