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SUMMARY STATEMENT 

 

In a mouse model of achondroplasia, targeting an Fgfr3-activating mutation to immature 

osteoblasts led to osteopenia and induced craniofacial membranous bone defects. 

 

 
ABSTRACT 

Achondroplasia (ACH), the most common form of dwarfism is caused by a 

missense mutation in the gene coding for fibroblast growth factor receptor 3 (FGFR3). 

The resulting increase in FGFR3 signaling perturbs the proliferation and differentiation 

of chondrocytes (CCs), alters the process of endochondral ossification and thus reduces 

bone elongation. Increased FGFR3 signaling in osteoblasts (OBs) might also contribute 

to bone anomalies in ACH. In the present study of a mouse model of ACH, we sought to 

determine whether or not FGFR3 overactivation in OBs leads to bone modifications. The 

model carries an Fgfr3 activating mutation (Fgfr3Y367C/+) that accurately mimics ACH; we 

targeted the mutation to either immature OBs and hypertrophic CCs or to mature OBs by 

using the Osx-cre and collagen 1α1 (2.3kb-Col1α1)-cre mouse strains, respectively. We 

observed that Fgfr3 activation in immature OBs and hypertrophic CCs (Osx-Fgfr3) not 

only perturbed the hypertrophic cells of the growth plate (thus affecting long bone 

growth) but also led to osteopenia and low cortical thickness in long bones in adult (3-

month-old) mice but not in growing (3-week-old) mice. Importantly, craniofacial 

membranous bone defects were present in the adult mice. In contrast, activation of 

Fgfr3 in mature OBs (Col1-Fgfr3) had very limited effects on skeletal shape, size and 

micro-architecture. In vitro, we observed that Fgfr3 activation in immature OBs was 

associated with low mineralization activity. In conclusion, immature OBs appears to be 

affected by Fgfr3 overactivation, which might contribute to the bone modifications 

observed in ACH independently of CCs. 
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INTRODUCTION 

 Achondroplasia (ACH, the most common form of dwarfism in humans) is caused 

by a missense mutation in the gene coding for fibroblast growth factor receptor 3 

(FGFR3); the mutation activates the receptor and its downstream signaling pathways 

(Horton et al., 2007; Rousseau et al., 1994). The disease is characterized by a number of 

clinical features, including short-limb dwarfism, lordosis, macrocephaly, frontal bossing, 

a small foramen magnum diameter, and midface hypoplasia (Horton et al., 2007). FGFR3 

gain-of-function mutations are also associated with mild dwarfism (hypochondroplasia) 

and severe dwarfism (thanatophoric dysplasia I and II) (3). 

 It is well established that in ACH, increased FGFR3 signaling in growth plate 

chondrocytes (CCs) perturbs their proliferation and differentiation, alters the 

endochondral ossification process, and thus reduces bone elongation (Ornitz and 

Legeai-Mallet, 2016). Recently, it has been suggested that osteoblasts (OBs) might also 

be affected in ACH. Indeed, children with ACH show mandible hypoplasia, frontal bone 

defects, and (in some cases) premature fusion of coronal sutures - suggesting that 

membranous ossification is disturbed by FGFR3 over-activation (Biosse Duplan et al., 

2016; Di Rocco et al., 2014). Furthermore, adults with ACH have a low bone mineral 

density, which leads to osteopenia or osteoporosis (Matsushita et al., 2016).  Muenke 

syndrome (MS), the most common form of craniosynostosis, is also due to a single 

FGFR3 gain-of-function mutation (Muenke et al., 1997).  

The expression of FGFRs in CC and OB lineage cells is tightly regulated (Yu and 

Ornitz, 2007). During skeletal development, cells in mesenchymal condensation take on 

a chondrogenic profile and express FGFR3. In developing bone, FGFR3 is expressed in 

proliferating and prehypertrophic CCs and trabecular OBs. In mature bone, FGFR3 is 

detected in OBs lining the endosteum of cortical bone, along the surface of trabecular 

bone, and in osteocytes (Xiao et al., 2004). With regard to cranial vault formation, FGFR1 

and FGFR2 are expressed at the osteogenic front respectively in proliferative and 

mature osteoblasts, while FGFR3 is expressed to a lesser extent during suture formation 

in immature and mature OBs located at the periphery of bone tissue (Rice et al., 2000). 

In vitro, OBs from calvaria express all the FGFRs (from 1 to 4), whereas osteocytes only 

expresses FGFR1 and 3 (Delezoide et al., 1998; Kyono et al., 2012; Murali et al., 2016; 

Paic et al., 2009). 

 The bone phenotype has been described in several mouse models carrying Fgfr3 

loss- or gain-of-function mutations. In an Fgfr3 loss-of-function model, the absence of 

Fgfr3 leads to low bone mass and thinner cortical bone in adult mice (Eswarakumar and 

Schlessinger, 2007; Valverde-Franco et al., 2004), despite an increased OB count 

(Valverde-Franco et al., 2004). In the latter model, the absence of Fgfr3 increases early 

OB differentiation but interferes with the cells’ activity, thus leading to defective 

mineralization. Surprisingly, Fgfr3 activation in mouse models of ACH (Fgfr3G369C/+, 

Fgfr3G380R/G380R, Fgfr3Y367C/+) also decreases bone formation and femoral bone mass and 

alters bone microarchitecture in growing and young adult mice (Lee et al., 2017; 

Mugniery et al., 2012; Su et al., 2010). In the Fgfr3Y367C/+ mouse, targeting mature OBs 

(using the Col1 2.3kb cre strain) does not affect bone mass or microarchitecture in 
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growing animals (Mugniery et al., 2012). The effects of this cre strain in adult mice and 

the effects of Fgfr3 activation earlier in the course of OB differentiation have not 

previously been established. 

Although it is clear that increased FGFR3 signaling leads to bone modifications in 

humans and mice, the respective contributions of altered FGFR3 signaling in specific cell 

types (namely CCs and OBs) to the bone phenotype have not been defined. Assessing 

FGFR3’s specific role is important for finding a treatment for ACH; depending on the 

patient population (e.g. children vs. adults), therapeutic strategies might conceivably 

target different cell types (Ornitz and Legeai-Mallet, 2016). In adults, targeting OBs may 

be more relevant than CCs. In addition, understanding the effect of FGFR3 overactivation 

on the osteoblast is crucial for the development of treatments for craniosynostoses 

caused by FGFR3 mutations. Characterization of the CCs’ and OBs’ respective 

contributions is complex in mouse models, for two main reasons. Firstly, several major 

genes (Osterix, Runx2, and Col2 1) are expressed in both CCs and OBs during the 

differentiation process. These include genes whose promoters have been used to create 

Cre-expressing mouse strains (Elefteriou and Yang, 2011), meaning that both cell types 

are simultaneously targeted. Secondly, OBs originate from mesenchymal progenitors 

and follow different differentiation pathways. A substantial proportion of growth plate 

CCs transdifferentiate into OBs; this contributes to trabecular and cortical bone 

formation during endochondral ossification (Ono et al., 2014; Yang et al., 2014; Zhou et 

al., 2014). It is not known to what extent (if any) the differentiation and activity of OBs 

derived from disturbed growth plate CCs are modified in ACH. 

 In the present study, we sought to determine whether or not Fgfr3 overactivation 

in OBs leads to bone modifications in a mouse model of ACH. We took advantage of a 

model carrying an Fgfr3 activating mutation (Fgfr3Y367C/+) that accurately mimics ACH 

(Pannier et al., 2009), and targeted the mutation to either immature OBs and 

hypertrophic CCs or to mature OBs by using the Osx-cre and collagen 1α1 (2.3kb-

Col1α1)-cre mouse strains, respectively. We found that Fgfr3 activation in immature 

OBs and hypertrophic CCs not only perturbed hypertrophic cells in the growth plate 

(thus affecting long bone growth) but also led to osteopenia in adult (3-month-old) mice 

but not in growing (3-week-old mice). Importantly, growing mice displayed a defective 

frontal bone formation. In vitro, we observed that Fgfr3 activation in immature OBs 

isolated from calvaria reduced the cells’ mineralization activity.  In contrast, activation 

of Fgfr3 in mature OBs had very limited effects on skeletal shape, size and micro-

architecture. 

 
 
RESULTS 

Fgfr3 activation in immature OBs and hypertrophic CCs leads to dwarfism and growth 

plate anomalies. 

The groups of Osx-Fgfr3 and Col1-Fgfr3 mice were born with the expected 

Mendelian ratio. At 3 months of age, imaging showed that bone growth was impaired in 

Osx-Fgfr3 mice, relative to Osx-cre mice (Fig. 1A). The Osx-Fgfr3 mice had a shorter naso-
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anal distance (by 13.1% vs. the comparator mice; p≤0.005), a shorter femur (by 28.3%, 

p≤0.001), and a shorter tibia (by 26.1%, p≤0.001) (Fig. 1B, C & D). In contrast, Col1-Fgfr3 

mice were indistinguishable from controls (Fig. 1B, C & D). 

 The mild dwarfism observed in Osx-Fgfr3 mice prompted us to look at the growth 

plate of long bones in growing and adult animals. Following Safranin O staining and 

collagen X immunostaining (to identify cartilage and hypertrophic CCs), we observed 

that the ratio between the hypertrophic zone and growth plate cartilage was abnormally 

low in Osx-Fgfr3 mice (by 22.1%, p≤0.05) at 3 weeks of age (Fig. 2A & B) suggesting a 

chondrocyte differentiation defect. This defect can be associated with a modification of 

the area of individual hypertrophic chondrocyte. Indeed, we found that the mean area of 

HC was smaller in Osx-Fgfr3 compared to Osx-cre (-17,5%, p<0.05) (Fig. 2C). 

Accordingly, there was a small increase in the number of hypertrophic chondrocytes per 

surface compared to Osx-cre (+18.4%, p<0.05) (Fig. 2D). The reduced size of 

hypertrophic chondrocytes in the Osx-Ffgr3 mutants suggested a defect in chondrocyte 

differentiation induced by increased Fgfr3 signaling, as observed in other models 

(Biosse Duplan et al., 2016; Komla-Ebri et al., 2016). To measure whether increased 

Fgfr3 signaling was indeed present in these cells, we studied the Mapkinase pathway 

(Komla-Ebri et al., 2016). In Osx-Fgfr3 mutants, phosphorylation of ERK1/2 (pERK1/2) 

was increased in the growth plate (by 239%, p≤0.05), mainly in hypertrophic 

chondrocytes, compared to Osx-cre mice (Fig. 2A & E), reflecting increased Fgfr3 

signaling in these mice.). 

In contrast, the proliferation of the CCs in the whole growth plate was not modified in 

Osx-Fgfr3 (Fig. Sup. 1A & B); this was expected, since the Osx-cre mouse strain does not 

target proliferative CCs (Elefteriou and Yang, 2011). The proliferation of OBs in the bone 

marrow was not altered either (Fig. Sup. 1A & B). The abnormally low ratio between the 

hypertrophic zone and growth plate cartilage persisted at 3-month-old (18.5% lower; 

p≤0.05) (Fig. Sup. 2A & B). No such defects were observed in Col1-Fgfr3 mice at 3-week-

old or 3-month-old (Fig. 2F-I and Fig. Sup. 2C & D).  As expected, in Col1-Fgfr3 mutants, 

we did not detect abnormal expression of pERK1/2 due to an increased Fgfr3 signaling 

in the growth plate (Fig. 2F & J). 

 

 Fgfr3 activation in immature OBs leads to osteopenia. 

To analyze the effect of Fgfr3 overactivation in OBs on bone mass and 

microarchitecture, we used µCT to image the femurs of 3-week-old and 3-month-old 

mice. We did not observe a difference in the volume or architecture of trabecular bone 

and cortex in 3-week-old Osx-Fgfr3 mice, when compared with Osx-cre mice (Fig. Sup. 3). 

In contrast, marked osteopenia was present in adult (3-month-old) Osx-Fgfr3 mice, 

when compared with Osx-cre mice (Fig. 3A & B). The trabecular thickness and trabecular 

number were lower than in controls (by 23% (p≤0.005) and 34% (p≤0.01), 

respectively), whereas trabecular separation was higher (+10%, p≤0.01). This resulted 

in a low bone volume (by 46%, p≤0.005). Cortical thickness was also abnormally low in 

adult Osx-Fgfr3 mice (by 19%, p≤0.05) (Fig. 3C & D). Adult Col1-Fgfr3 mice did not show 
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any significant differences in bone mass, bone microarchitecture, or cortical thickness 

(Fig. 3A, B, C & D). 

 

 Fgfr3 activation in immature OBs and hypertrophic CCs affects craniofacial growth 

and induces cranial base anomalies. 

Bone growth of the skull depends on both endochondral and membranous 

ossification. Elongation of the cranial base relies on synchondroses - cartilaginous 

growth centers that separate the different bones of the base formed by endochondral 

ossification. In Osx-Fgfr3 adult mutants, the overall shape of the skull was modified, with 

a shorter skull (by 14%, p≤0.001) (Fig. 4A & B).  

The cranial base and the diameter of the foramen magnum were also smaller (by 

16% (p≤0.005) and 17% (p≤0.001), respectively) in these mice (Fig. 5A -D). We did not 

observe premature fusion of the synchondroses. (Fig. 5A). 

 The length of the skull was not modified in Col1-Fgfr3 mutants (Fig. 4A & B) but 

we did observe a slightly shorter cranial base (by 6%, p≤0.01) (Fig. 5A & B). More 

specifically, the presphenoid was shorter (by 15%, p≤0.005) in Col1-Fgfr3 mutants than 

in controls. The two other bones of the cranial base (the sphenoid and occipital) were 

not affected. The diameter of the foramen magnum did not differ (Fig. 5C & D). Again, we 

did not observe premature fusion of synchondroses (Fig. 5A). 

 

Fgfr3 activation in immature OBs causes defective membranous ossification of the skull. 

We next analyzed the effect of Fgfr3 activation on membranous ossification in the 

cranial vault, to which CC do not contribute. Osx-Fgfr3 adult mutants frequently showed 

a skewed snout and defects in frontal and nasal bones (Fig. 4A). The frontal bone defects 

were related to weak growth of the bone edges in the sagittal direction, resulting in a 

large hole. The nasal bone defects consisted of small holes in the bones. Some of the Osx-

cre mice also showed this type of defect, albeit less frequently than the Osx-Fgfr3 mice 

(Table 1). On 3D reconstructions, the average area of the frontal bone defect was much 

greater in Osx-Fgfr3 mice than in Osx-cre mice. The membranous defects were absent in 

Col1-Fgfr3 mutants (Fig. 4A and Table 1). 
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Fgfr3 activation in immature OBs modifies OB activity. 

To determine whether the osteopenia and cranial vault defects observed in adult 

Osx-Fgfr3 mice were caused by impaired OB proliferation, differentiation and/or 

activity, we cultured OBs generated from calvaria of Osx-cre and Osx-Fgfr3 mice in vitro. 

A live cell analysis of the cell number and viability using IncuCyte technology did not 

show any differences between OBs from Osx-cre and Osx-Fgfr3 mice (data not shown). 

Likewise, we did not observe differences in OB differentiation (as shown by ALP 

staining) between the genotypes (Fig. 6A). However, we found that OBs from Osx-Fgfr3 

mice formed fewer mineralization nodules (by 51%) after three weeks of culture than 

OBs from Osx-cre mice (p<0.01; Fig. 6B). OBs from Col1-Fgfr3 mice did not show any 

significant differences in OB differentiation and activity (Fig. 6C & D). 
 

DISCUSSION 

Although it is well established that FGFR3-activating mutations in 

chondrodysplasia primarily affect CCs and that changes in the proliferation and 

differentiation of these cells are responsible for the defective elongation of long bones 

(Ornitz and Legeai-Mallet, 2016), several observations in humans and in animal models 

suggest that OBs are also affected by elevated FGFR3 signaling. Adults with ACH or 

hypochondroplasia (two of the most common types of non-lethal, chondrodysplasia) 

have a low spinal bone mineral density (6) and frequently suffer from osteopenia and 

osteoporosis (Arita et al., 2013). Furthermore, several cases of premature fusion of 

cranial sutures (a process that involves OBs but not CCs) (28–30) and delayed 

membranous ossification of the cranial vault have been reported in children with ACH 

(4). In a mouse model of ACH, growing animals displayed severe osteopenia (Mugniery 

et al., 2012), partial premature fusion of sutures, and membranous ossification defects 

(Di Rocco et al., 2014). In order to design innovative therapeutic strategies for targeting 

specific cell types and correcting the aforementioned defects, it is essential to determine 

the OBs’ contribution to long bone modifications in ACH. To determine whether OBs are 

indeed affected by FGFR3 overactivation during membranous and endochondral 

ossification and bone remodeling, we used a cre /lox approach to target the Fgfr3Y367C 

mutation to OBs in mice.  

Our study results showed that targeting the Fgfr3Y367C mutation to cells 

expressing the cre recombinase under the control of the Osterix promoter impairs bone 

development and leads to short stature. This cre strain targets not only immature OBs 

but also a subset of CCs - mostly hypertrophic CCs (Chen et al., 2014; Zhou et al., 2010). 

The expression of the mutant Fgfr3 allele and elevated level of pERK1/2, impairing the 

differentiation in these CCs, might explain why the hypertrophic zone was smaller in the 

growth plate of Osx-Fgfr3 mice and why longitudinal growth of the appendicular 

skeleton was defective. This finding was reinforced by the observation that the 

proliferation of CCs in the proliferative zone (where CCs do not express Osterix) was not 

modified in Osx-Fgfr3 mice. The defective CC differentiation observed in the 

hypertrophic zone in the growth plate of Osx-Fgfr3 mice is reminiscent (although much 
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milder) of that observed when the same mutation is expressed either ubiquitously or in 

CCs and osteochondroprogenitors (18). The dwarfism observed in Osx-Fgfr3 mice is also 

much less severe than in these two strains of mice, due to the lack of Fgfr3 expression in 

proliferative CCs in the present model. In contrast, we did not observe obvious growth 

plate and bone anomalies when using the Col1 2.3kb cre strain, which does not target 

CCs. The fact that Col1-Fgfr3 mice had a normal body size indicates that FGFR3 

overactivation in mature OBs does not affect long bone growth. 

The cranial base and the foramen magnum diameter were also affected in Osx-

Fgfr3 mice, and their skull was brachycephalic. Elongation of the cranial base during 

growth is critical for attaining a normal skull length and a normal foramen magnum 

diameter. The process is primarily controlled by synchondroses that separate the 

different bones of the cranial base. The synchondroses and the CCs they contain are 

organized in much the same way as the growth plates of long bones (Wei et al., 2016), 

and the Fgfr3Y367C mutation affects the two sites in a similar way (Di Rocco et al., 2014). 

It is therefore reasonable to assume that the reduced length of the cranial base in Osx-

Fgfr3 mutants resulted from the defective differentiation of CCs in the synchondroses, as 

observed in another model of Fgfr3 activation (Matsushita et al., 2008). Unexpectedly, 

we observed a small reduction in the length of the cranial base in Col1-Fgfr3 mutants – 

even though the overall sagittal length of the skull and the foramen magnum diameter 

were not affected. This observation suggests that Fgfr3 overactivation in OBs alone, 

independently of CCs could also affects bone elongation in the cranial base. 

The exact role of FGFR3 during bone remodeling has not been established. Total 

deletion of Fgfr3 results in osteopenia and thinner cortical bone in adult mice 

(Eswarakumar and Schlessinger, 2007; Valverde-Franco et al., 2004), and the absence of 

Fgfr3 increases early OB differentiation but interferes with the cells’ normal activity - 

thus leading to defective mineralization. Specific deletion of Fgfr3 in CCs is associated 

with greater bone formation and thus greater bone mass (35). Fgfr3 overactivation is 

also associated with low bone formation, low bone mass, and altered bone micro-

architecture in mice (Lee et al., 2017; Mugniery et al., 2012; Su et al., 2010). Along with 

defective long bone elongation, adult Osx-Fgfr3 mice also displayed marked osteopenia - 

as shown by the low trabecular bone volume and low cortical thickness. When Fgfr3 

overactivation was present later in OB differentiation, the bone mass was not affected. 

Given the influence of growth plate disorganization on trabecula formation and 

trabecular micro-architecture, it is difficult to establish the contribution of OBs and bone 

remodeling to this phenotype in adult mice with Fgfr3 mutations. The primary and 

secondary spongiosa are severely affected in growing Fgfr3Y367C/+ mice when the 

mutation is expressed ubiquitously and targets all CCs (Mugniery et al., 2012). In 

contrast, we did not observe osteopenia in growing Osx-Fgfr3 mice at the age of 3 weeks 

– suggesting that the low bone mass observed at 3 months is independent of growth 

plate anomalies and is due (at least in part) to defective bone remodeling, rather than 

poor bone mass gain. 
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Since a large number of OBs are derived from growth plate CCs (Tsang and 

Cheah, 2019; Yang et al., 2014), we cannot rule out the possibility that OBs in Osx-Fgfr3 

adult mice are defective during bone formation and remodeling because they were 

targeted by the mutation when they were hypertrophic CCs. Transdifferentiated CCs 

from the growth plate might contribute less to cortical bone growth than to trabecular 

bone growth (Tsang and Cheah, 2019; Yee et al., 2018). In this respect, it is important to 

note that the cortical thickness was low in adult Osx-Fgr3 mice. 

Our observation of skull defects in adult Osx-Fgfr3 mice demonstrates that Fgfr3 

overactivation in OBs affects bone formation. Several bones formed by membranous 

ossification (i.e. in the absence of a cartilage template, such as nasal and frontal bones) 

were affected by Fgfr3 overactivation in Osx-Fgfr3 mutants. Accordingly, when the same 

Fgfr3 mutation that we used here was targeted to hypertrophic chondrocytes alone, 

using the ColX-cre (Gebhard et al., 2008), the skull defects were absent (unpublished 

data). These skull defects were not systematically observed in Osx-Fgfr3 mutants, and an 

incompletely penetrant skull phenotype has also been observed in another mouse model 

of Fgfr3 overactivation (Twigg et al., 2009). Furthermore, it has been reported that the 

osterix-cre transgene alone causes craniofacial defects (Huang and Olsen, 2015; Wang et 

al., 2015). It was therefore important to use appropriate controls (e.g. Osx-cre) in our 

study and to quantify the frequency of skull bone defects. Hence, we found that these 

membranous defects were more frequent and more severe in mutants than in controls, 

and so that they likely the resulted from Fgfr3 overactivation. This is in line with 

previous observations of membranous ossification defects in the skull of mice with 

ubiquitous Fgfr3 overactivation and in children with ACH (Di Rocco et al., 2014). The 

Osx-Fgfr3 mice often had a shortened, skewed snout - resulting in dental malocclusion 

and perturbed incisor wear. The mice had abnormally simple premaxillary sutures, 

rather than normal, interdigitated sutures. A similar phenotype is seen in the mouse 

model of Muenke syndrome - a form of craniosynostosis caused by FGFR3 

overactivation (Twigg et al., 2009). In agreement with an effect of FGFR3 activation on 

OBs, we observed in vitro that the mineralization of calvaria OBs isolated from Osx-Fgfr3 

mice was impaired, even though there were no obvious differences in proliferation (in 

vitro and in vivo) and differentiation. These results do not rule out a role of Fgfr3 

activation in the regulation of osteoprogenitor proliferation (Kawane et al., 2018). Our 

data on Fgfr3’s likely role in OB homeostasis during calvarium development are in line 

with our recent studies of an fgfr3 loss-of-function zebrafish model, which displayed 

major cranial vault defects, and impairments in immature OB expansion and 

differentiation (Dambroise et al., 2020).  

Given the osteopenia, low cortical thickness, and membranous craniofacial 

defects observed in adult Osx-Fgfr3 mice and the impaired mineralization by OBs 

observed in vitro, we conclude that OBs are indeed affected by Fgfr3 overactivation and 

contribute to bone modifications independently of CCs. Our results further characterize 

FGFR3’s role in osteogenesis, where FGFR3 overactivation during early-stage OB 
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differentiation impairs this cell lineage’s activity. Future pharmacological treatments of 

ACH should therefore be carefully analyzed for their effects on both CC and OB 

differentiation and activity in growing and adult patients.  

 

MATERIALS & METHODS 

 

 Study approval. All experimental procedures and protocols were approved by the 

French national animal care and use committee (APAFIS#24826-2018080216094268 

v5), in compliance with the EU Directive 2010/63/EU for animals. 

 

 Mouse strains. We used the Osx-cre (Rodda and McMahon, 2006) and Col1a1-cre 

(Dacquin et al., 2002) mouse strains to generate mouse models that expressed the 

Y367C mutation (Fgfr3neoY367C) (Pannier et al., 2009) in either immature OBs and 

hypertrophic CCs (Osx-Fgfr3) or mature OBs (Col1-Fgfr3). We crossed Fgfr3neoY367C/+ 

mice with hemizygous transgenic Osx-cre or Col1α1-cre mice to excise the NEO sequence 

from the germline and thus generated Osxcre/+-Fgfr3Y367C/+, Col1α1cre/+-Fgfr3Y367C/+ mice. 

In order to take account of the bone phenotype of the Osx-cre transgenic mouse, Osx-

Fgfr3 mice were compared with Osxcre/+ littermates. Col1-Fgfr3 mice were compared 

with either WT or Col1α1cre/+ littermates. Cre activity of the Col1 1-cre line was assessed 

using double-fluorescent Cre reporter mice (mT/mG) (Muzumdar et al., 2007), as well 

as genomic PCR of WT and mutant alleles in calvarial osteoblasts cultures isolated from 

Col1-Fgfr3 mice and controls. All experiments were performed on 3-week-old or 3-

month-old male mice. At least 6 mice from each group were analyzed. All mice had a 

C57BL/6 background and were genotyped using a PCR assay of a sample of tail DNA, as 

described previously (Pannier et al., 2009). 

 

 Histology and immunohistochemistry. The femurs and cranial base from Osx-cre, 

Osx-Fgfr3 and Col1-Fgfr3 mice and their control littermates were fixed in 4% 

paraformaldehyde at 4°C for 24 hours, washed in PBS, decalcified in 0.5 M EDTA (pH 

8.0) for a week or a month (depending on the mice’s age), dehydrated in graded ethanol 

solutions, cleared in xylene, and embedded in paraffin. Five-micron sections were cut, 

stained with Safranin O, and immunohistochemically stained using standard protocols. 

Antibodies against Collagen type X (1:50 dilution; BIOCYC, Luckenwalde, Germany), 

Phospho ERK1/2 (1:500 dilution, Cell Signaling, USA) and Ki67 (1:3000; Abcam, 

Cambridge, MA, USA) and the Dako Envision kit (Dako North America, Inc., CA, USA) 

were used. Images were acquired with an Olympus PD70-IX2-UCB microscope 

(Olympus, Tokyo, Japan), and analyzed using ImageJ software (National Institutes of 

Health, Bethesda, MD, USA). Mean areas of individual HC and number of HC were 

measured from collagen X labelled sections, within multiple 8500 m2 ROIs on sections 

immunostained for Collagen type X.   
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 X-rays and micro computed tomography (µCT) analyses. Osx-cre, Osx-Fgfr3 and 

Col1-Fgfr3 mice and their control littermates were sacrificed at 3 weeks or 3 months of 

age. The mice were measured and whole-body X-rays were performed with a digital 

cabinet X‐ray system (LX‐60, Faxitron, Tucson, AZ, USA). The anatomic features on the 

X-rays were measured with ImageJ software. The femurs and whole heads were 

dissected and stored in 70% ethanol. The head was imaged using an lCT40 Scanco 

vivaCT42 (Scanco Medical, Bassersdorf, Switzerland), with the following settings: 

integration time: 300 ms, 45 E(kVp), 177 mA. Three-dimensional images were 

reconstructed using OsiriX software (64-bit version; Pixmeo, Bernex, Switzerland). 

Femurs were imaged using a Skyscan 1272 system (Bruker, USA), with the following 

scanning parameters: image pixel size: 5 µm; X-ray voltage: 60 kV; X-ray current: 166 

µA; filter: A1 0.71 mm; exposure: 1800 ms; rotation step: 0.71°; frame averaging: 3; 

tomographic rotation: 180°. Cross-sections were reconstructed using NRecon software 

(Bruker), with the following parameters: smoothing: 0; ring artefact reduction: 2; beam-

hardening correction: 40%. The Dataviewer, CTAn and CTVox software packages 

(Skyscan) were used to visualize and determine bone histomorphometric variables. For 

each variable, the volume of interest was proportional to the length of the femur. 

Cortical bone was analyzed in the midshaft of the femur. The volume of interest ranged 

from 5% above the midshaft to 5% below. Trabecular bone was analyzed at the distal 

femoral metaphysis. The region of interest was delimited manually between the end of 

the primary spongiosa and a site 15% lower. 

  

 Isolation of osteoblastic cells from calvaria. Primary OBs from calvaria of 2- to 5- 

Osx-Fgfr3, Col1-Fgfr3 and Control day-old mice were isolated and cultured as described 

previously (Mugniery et al., 2012). The cells were obtained by digestion with 

collagenase IV (C5138, Sigma-Aldrich, Saint Louis, MO, USA), expanded in -MEM 

medium (Gibco, Carlsbad, CA, USA) complemented with 10% fetal calf serum, 2 mM 

glutamine, 100 U/ml penicillin and 100 mg/ml streptomycin, and cultured in a 

humidified 5% CO2 atmosphere at 37 °C. At subconfluence, OBs were harvested with 

trypsin/EDTA (Invitrogen, Carlsbad, CA, USA). 

 

 In vitro OB proliferation, differentiation, and mineralization assays. For 

proliferation studies, harvested cells were plated in 96-well plates at a density of 1000 

cells/well. Proliferation over 7 days was measured using the IncuCyte live-content 

imaging platform (Sartorius). Images were acquired every 3 hours with an X4 lens. For 

differentiation and mineralization studies, we used differentiation medium (50 µM 

ascorbic acid and 10 mM β-glycerophosphate disodium salt hydrate (Sigma-Aldrich)). 

Cells were plated at a density of 12500/cm². Osteogenic differentiation was assessed on 

day 7, cells were stained for alkaline phosphatase (ALP) activity by using 

bromochloroindoyl-phosphate/nitroblue tetrazolium chloride (Sigma-Aldrich). 

Mineralization was detected on day 21, using alizarin red staining (Sigma-Aldrich). 
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Statistics. Differences between experimental groups were assessed with an 

analysis of variance or the Mann–Whitney test. The threshold for statistical significance 

was set to p≤0.05. All statistical analyses were performed using GraphPad PRISM 

software (version 5, GraphPad Software Inc., La Jolla, CA, USA). All values were quoted 

as the mean ± standard deviation (SD). 
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Figures 
 
 

 
 

 

Figure 1:  

Fgfr3 activation in immature OBs and hypertrophic CCs leads to mild dwarfism. 

(A) Representative X-rays of 3-month-old Osxcre/+-Fgfr3Y367C/+ mice (referred to here as 

Osx-Fgfr3), Osxcre/+ littermates (Osx-cre), Col1α1cre/+-Fgfr3Y367C/+ mice (Col1-Fgfr3) and 

WT or Col1α1cre/+ littermates (controls) (B) Mean  SD naso-anal distance for 3-month-

old Osx-Fgfr3, Osx-cre, Col1-Fgfr3 and control mice. (C) Mean  SD length of the left 

femur in 3-month-old Osx-Fgfr3, Osx-cre, Col1-Fgfr3 and control mice. (D) Mean  SD 

length of the left tibia in 3-month-old Osx-Fgfr3, Osx-cre, Col1-Fgfr3 and control mice. 

Each point represents an individual mouse (n 8 for each genotype); ** p 0.01 and **** 

p 0.0001 when compared with the appropriate control group. 
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Figure 2:  

Fgfr3 activation in immature OBs and hypertrophic CCs leads to growth plate 

anomalies. (A) Representative histologic sections of femurs of 3-week-old Osx-Fgfr3 

and Osx-cre mice, stained with Safranin O (to identify the growth plate cartilage; upper 

panel) and immunolabelled for collagen type X (to identify hypertrophic CCs; middle 

panel) and for pERK1/2 (lower panel). (B) Quantification of the size of the hypertrophic 

zone in the growth plate. (C) Mean area of individual HC of the hypertrophic zone in the 

growth plate. (D) Quantification of number of HC per surface in the hypertrophic zone of 

the growth plate. (E) Quantification of pERK1/2 -positive cells in the growth plate. (F) 
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Representative histologic sections of femurs of 3-week-old Col1-Fgfr3 and control mice 

stained with Safranin O (to identify the growth plat cartilage; upper panel) and 

immunolabelled for collagen type X (to identify hypertrophic CCs; middle panel) and for 

pERK1/2 (lower panel). (G) Quantification of the size of the hypertrophic zone in the 

growth plate. (H) Mean area of individual HC of the hypertrophic zone in the growth 

plate. (I) Quantification of number of HC per surface in the hypertrophic zone of the 

growth plate. (J) Quantification of pERK1/2 -positive cells in the growth plate. Each 

point represents an individual mouse (n 6 for each genotype), * p 0.05 when compared 

with the appropriate control group. 
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Figure 3:  

Fgfr3 activation in immature OBs leads to osteopenia in adult animals. (A) 

Representative two-dimensional (2D) sections of the right femurs in 3-month-old Osx-

Fgfr3, Osx-cre, Col1-Fgfr3 and control mice, generated from the µCT data. (B) Trabecular 

micro-architecture of the right femurs in 3-month-old Osx-Fgfr3, Osx-cre, Col1-Fgfr3 and 

control mice, as assessed with µCT. (C) Representative 2D sections of the right femurs in 

3-month-old Osx-Fgfr3, Osx-cre, Col1-Fgfr3 and control mice sectioned at mid-shaft, 

generated from the µCT data. (D) Cortical micro- and macro-architecture of the right 

femurs in 3-month-old Osx-Fgfr3, Osx-cre, Col1-Fgfr3 and controls, as assessed with µCT. 

Tb. Th: trabecular thickness, Tb. N: trabecular number, Tb. Sp.: trabecular separation, 

BV/TV: bone volume divided by total volume, Cort. Th.: cortical thickness. Each point 

represents an individual mouse (n 6 for each genotype), * p 0.05 and ** p 0.01, when 

compared with the appropriate control group. 
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Figure 4:  

Fgfr3 activation in immature OBs and hypertrophic CCs affects skull growth. (A) 

Representative, three-dimensional reconstructions of the skull in 3-month-old Osx-

Fgfr3, Osx-cre, Col1-Fgfr3 and control mice. (B) Quantification of the length and width 

(measured on µCT) of the skull in 3-month-old Osx-Fgfr3, Osx-cre, Col1-Fgfr3 and control 

mice. Each point represents an individual mouse (n 5 for each genotype), *** p 0.01, 

when compared with the appropriate control group. 

  

D
is

ea
se

 M
o

de
ls

 &
 M

ec
ha

ni
sm

s 
• 

D
M

M
 •

 A
cc

ep
te

d 
m

an
us

cr
ip

t



 

 
 

 

Figure 5: 

Fgfr3 activation in immature OBs and hypertrophic CCs affects the cranial base. (A) 

Representative 2D midline sagittal sections of the skull in 3-month-old Osx-Fgfr3, Osx-

cre, Col1-Fgfr3 and control mice, generated from the µCT data. (B) Mean  SD length of 

the cranial base in 3-month-old Osx-Fgfr3, Osx-cre, Col1-Fgfr3 and control mice. (C) 

Representative 2D axial sections of the foramen magnum in 3-month-old Osx-Fgfr3, Osx-

cre, Col1-Fgfr3 and control mice, generated from the µCT data. (D) Mean  SD diameter 

of the foramen magnum in 3-month-old Osx-Fgfr3, Osx-cre, Col1-Fgfr3 and control mice. 

Each point represents an individual mouse (n 5 for each genotype), ** p 0.01 and **** 

p 0.0001, when compared with the appropriate control group. 
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Figure 6:  

Fgfr3 activation in immature OBs impairs OB activity. (A) Representative 

photographs of OBs from Osx-Fgfr3 and Osx-cre mice stained for ALP after 7 days of 

culture; mean  SD intensity of ALP staining of OBs from Osx-Fgfr3 and Osx-cre mice 

after 7 days of culture. (B) Representative photographs of OBs from Osx-Fgfr3 and Osx-

cre mice stained with alizarin red after 21 days of culture; mean  SD intensity of 

alizarin red staining of OBs from Osx-Fgfr3 and Osx-cre mice after 21 days of culture. (C) 

Representative photographs of OBs from Col1-Fgfr3 and Control mice stained for ALP 

after 7 days of culture; mean  SD intensity of ALP staining of OBs Col1-Fgfr3 and Control 

mice after 7 days of culture. (D) Representative photographs of OBs from Col1-Fgfr3 and 

Control mice stained with alizarin red after 21 days of culture; mean  SD intensity of 

alizarin red staining of OBs from Col1-Fgfr3 and Control mice after 21 days of culture. 

Each point represents an individual mouse (n 6 for each genotype), ** p 0.01, when 

compared with the appropriate control group. 
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Table 1: Fgfr3 activation in immature OBs and hypertrophic CCs affects the 

craniofacial skeleton .  

 
 
 

 

Snout deviation 

(%) 

Malocclusion 

(%) 

Nasal bone 

defect 

(%) 

Frontal bone 

defect 

(%) 

Size of frontal 

bone defect 

(mm 2), mean  

SD 

Osx-cre 33. 33.3 50 33.3 0.32   0.25 

Osx-Fgfr3 83.3 100 100 66.7 1.62  1.16 

Control 0 0 0 0 N 

Col1-Fgfr3 16.7 0 0 0 N 
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Fig. S1. 
Proliferation is not affected by increased Fgfr3 in immature OBs and hypertrophic CCs. (A) 
Representative histologic sections of femurs of 3-week-old Osx-Fgfr3 and Osx-cre mice 
immunostained for the proliferation marker Ki67. (B) Quantification of proliferating (Ki-67-
positive) cells in the growth plate and in the bone marrow. 

Disease Models & Mechanisms: doi:10.1242/dmm.048272: Supplementary information
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Fig. S2. Growth plate anomalies caused by Fgfr3 activation in immature OBs and 
hypertrophic CCs are still present in adult mice. (A) Representative histologic sections of 
femurs of 3-month-old Osx-Fgfr3 and Osx-cre mice, stained with Safranin O to identify the 
growth plate cartilage (upper panel) and immunolabelled for collagen type X to identify 
hypertrophic CCs (lower panel). (B) Quantification of the size of the hypertrophic zone in the 
growth plate. (C) Representative histologic sections of femurs of 3-month-old Col1-Fgfr3 and 
control mice stained with Safranin O (to identify the growth plate cartilage; upper panel) and 
immunolabelled for collagen type X (to identify hypertrophic CCs; lower panel). (D) 
Quantification of the size of the hypertrophic zone in the growth plate. Each point represents 
an individual mouse (n³6 for each genotype), * p£0.05 when compared with the appropriate 
control group. 

Disease Models & Mechanisms: doi:10.1242/dmm.048272: Supplementary information
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Fig. S3.  Fgfr3 activation in immature OBs does not lead to osteopenia in growing 
animals. (A) Trabecular and cortical micro- and macro-architecture of the right femurs of 3-
week-old Osx-Fgfr3 and Osx-cre mice, as assessed with µCT. Tb. Th: trabecular thickness, Tb. 
N: trabecular number, Tb. Sp: trabecular separation, BV/TV: bone volume divided by the total 
volume, Cort. Th: cortical thickness. Each point represents an individual mouse (n³6 for each 
genotype). 

Disease Models & Mechanisms: doi:10.1242/dmm.048272: Supplementary information
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