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Abstract

Extracellular vesicles (EVs), composed of proteins, lipids, and nucleic acids, are key mediators of intercellular communication
across various tissues. However, research on EVs isolated directly from bone tissue remains limited. Here, we identified for the
first time and characterized two EV subpopulations extracted from bone tissue and enhanced our understanding of their roles in
bone physiology. These two EV subpopulations were reproducibly isolated: a large EV population (IEV; 237.7+8.8 nm) and a
small EV population (sEV; 109.2+8.3 nm), both exhibiting the expected shape and presence of EV and bone cell markers.
Comparative analysis of their cargos revealed unique or enriched proteins and miRNA profiles for each, suggesting shared func-
tional characteristics with bone cells, including osteocytes, osteoblasts, and osteoclasts. Notably, IEVs contained proteins such
as FHL2 and pleiotrophin, along with miRNAs including miR-15b-5p, miR-29a-3p, and miR-128-3p, all of which are involved in
early osteogenic signaling pathways such as Hippo, TGF-f, and Wnt. Furthermore, sEVs contained ALP, PAPSS2, and miR-125b,
both known regulators of matrix mineralization. Both EV subpopulations were internalized by stromal ST2 and preosteoblastic
MC3T3-E1 cells. We present evidence that IEVs significantly enhanced ALP activity in ST2 cells, indicating early osteogenic stim-
ulation, whereas sEVs partially promoted matrix mineralization in primary osteoblasts. Our findings provide novel insights into
the role of bone-derived EVs as possible complementary mediators of osteogenesis in vivo and highlight the potential of their
cargos in advancing bone regeneration strategies.

NEW & NOTEWORTHY This study identifies for the first time two extracellular vesicle (EV) subpopulations isolated from young
male mice bone tissue, with distinct mean size and molecular signature. Analysis of the protein and miRNA cargos of these EVs
indicates that the large and small EVs are involved in different stages of osteogenesis, from commitment to the formation of min-
eralized tissue. These findings provide new insights into the role of bone-derived EVs in bone physiology.

bone; extracellular vesicles; osteogenesis; proteomics; small RNA sequencing

INTRODUCTION

Osteogenesis is a critical process for maintaining bone
mass, quality, and regeneration. Central to this process are
osteoblasts (bone-forming cells) and their mesenchymal pro-
genitor cells, which drive the formation of new bone (1).
Osteocytes, derived from mature osteoblasts, are highly speci-
alized and multifunctional cells that constitute over 95% of all
bone cells (2). Acting as key regulators and coordinators of
osteogenesis, they play an essential role in maintaining the
bone matrix and ensuring mineralization (3). These cells are
embedded within a mineralized matrix and interconnected,
forming a complex osteocytic network (4). Osteocytes function
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as mechanosensors, responding to extracellular signals such
as fluid flow shear stress to trigger appropriate responses from
effector cells, including osteoblasts, osteoclasts (bone-resorb-
ing cells), and their precursors. Osteocytes thus serve as coor-
dinators and primary regulators of bone remodeling, initiating
remodeling cycles and facilitating crosstalk between osteo-
blasts and osteoclasts to maintain bone health.

The regulation of osteogenesis involves complex and
dynamic interactions among various bone cells, forming a
sophisticated regulatory network influenced by soluble factors
that modulate osteoblastic activity. For example, Wnt antago-
nists such as sclerostin and dickkopf-related protein 1 (DKK-1)
inhibit osteoblastogenesis, whereas signaling molecules such
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as nitric oxide (NO), ATP, and prostaglandin E2 (PGE2) pro-
mote anabolic responses in bone tissue (3, 5). Although the
role of locally secreted soluble factors in osteogenesis is well-
documented, recent research over the past decade has increas-
ingly recognized extracellular vesicles (EVs) as critical regula-
tors of bone formation and regeneration (6, 7).

EVs are heterogeneous particles released by cells, tradition-
ally categorized by their biogenesis and size. The terms exo-
somes, which refer primarily to EVs of endosomal origin, and
ectosomes or microvesicles, derived from plasma membrane
budding, have historically been used. However, these classifi-
cations have been replaced by the designations of small EVs
(SEVs, <200 nm) and large EVs (IEVs, >200 nm) (8).

EVs carry a diverse array of cargo, including soluble, mem-
brane-bound, and transmembrane proteins, as well as coding
and noncoding nucleic acids, lipids, and other cytosolic com-
pounds such as ions and small organelles. The composition of
these cargos is influenced by both the cellular origin of the
EVs and their pathophysiological environment (9-11). EVs are
crucial for intercellular communication, acting both locally
and distally (12). Their potential role in communication
among bone cells has been discussed in numerous publica-
tions (see Ref. 13 for review). EVs and their cargos are released
by various bone cells and their precursors in vitro, including
mesenchymal stem cells (MSCs) (14), osteoblasts (15, 16),
osteocytes (17-19), and osteoclasts (20-22). These vesicles
seem crucial to essential processes, ranging from bone remod-
eling (23, 24) to repair and regeneration (6, 25-27).

Among bone-derived vesicles, matrix vesicles (MVs) have
been recognized since the 1970s as key mediators of bone
extracellular matrix (ECM) mineralization. Despite their his-
torical roles, there is no consensus on whether MVs should
be classified as EVs (28). Some researchers argue that MVs
and EVs overlap significantly in terms of biogenesis, compo-
sition, and function, making it challenging to distinguish
between them (29). Conversely, recent studies have identi-
fied differences in size, protein composition, and function
between MVs and EVs derived from osteoblastic cell lines in
vitro, suggesting distinct roles and characteristics for these
vesicle types (30).

The application of EVs in bone regeneration could repre-
sent a significant advancement, offering more effective and
safer therapeutic options compared with traditional cell
therapies. However, further research is necessary to better
understand the mechanisms and cargos involved in EV func-
tion in vivo, as well as to mitigate potential adverse effects
such as tumorigenesis and inflammation. Another promis-
ing approach is to exploit the bioactive molecules within EVs
that are implicated in the physiological mechanisms of bone
regeneration.

Most of the knowledge regarding the molecular cargos of
EVs derived from bone cells stems from in vitro studies (31,
32), and our understanding of the delivery of molecular car-
gos by EVs to enhance or stimulate osteogenesis is still lim-
ited. Therefore, this study aims to investigate EVs isolated
from mouse long bones in vivo and to provide initial infor-
mation on their osteogenic potential in vitro by identifying
their protein and microRNA (miRNA) cargos. Given their
great diversity and small numbers, ascribing a specific bio-
logical effect to a given EV is particularly difficult because
EVs evolve in number, space, and time within the tissue,
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following the dynamic evolution of the cells they contain. It
is more likely that EVs derived from the different bone cells,
present altogether in the extracellular fluid, have a common
or even synergistic action on the recipient cells, which, in
addition, may or may not be specifically targeted.

To this end, we established an approach to extract EVs
directly from murine long bones, thereby minimizing biases
associated with in vitro culture systems and allowing us to
examine vesicles produced under physiological conditions.
To investigate the properties of these heterogeneous vesicles,
we used a differential ultracentrifugation approach to sepa-
rate them into subpopulations based on size and density,
called large and small EVs. We noted that available literature
has focused mainly on small vesicles (exosomes and matrix
vesicles) extracted from bone, leaving the potential role of
larger EVs less well characterized. We compared these two
subpopulations of EVs based on their protein and miRNA
content. Proteomic analysis showed that IEVs and sEVs had
similar core components, but also displayed distinct
molecular profiles, including skeletal-related pathways.
Although the two EV types shared most of their miRNA
content, differential enrichment of selected miRNAs was
identified. Observed in vitro, the effects of the two EV sub-
populations on stromal cell differentiation and osteoblas-
tic activity suggest a complementary role in osteogenesis
and beyond. These results contribute to a better under-
standing of the complexity and diversity of bone-derived
EVs and their potential involvement as a whole in the
physiological regeneration mechanisms of bone tissue.

MATERIALS AND METHODS

Isolation of EVs from Bone

SWISS mice (Janvier Labs) were housed in the Nantes
University Unité de Thérapeutique Expérimentale de I'Institut
de Recherche en Santé de Nantes Université (UTE IRS-UN)
animal facility under specific pathogen-free conditions, adher-
ing to institutional guidelines (Accreditation Number C44-
278). All procedures were conducted in compliance with
French and European regulations regarding the care and pro-
tection of laboratory animals (EC Directive 86/609, French
Law 2001-486 of June 6, 2001).

EVs were extracted from the tibias and femurs of 8-wk-old
male SWISS mice following the protocol established by
Balcerzak et al. (33). However, to preserve the integrity of
protein content and reduce the risk of altering EV cargo,
Balcerzak’s protocol was adapted by removing enzymatic
digestion and bone perfusion. After carefully removing all
surrounding soft tissue and cutting the epiphyses, the bones
were centrifuged at 14,000 g for 3 s to eliminate bone mar-
row. The bones were then crushed using a PT 10-35 GT,
Polytron at 336 g for 10 s. The resulting supernatant was cen-
trifuged at 700 g for 10 min to remove bone debris, followed
by a second centrifugation at 2,000 g for 10 min to eliminate
tissue debris. The supernatant, referred to as the total frac-
tion (total), was ultracentrifuged at 100,000 g for 70 min to
separate the total vesicular fraction (pellet) (EVtot) from the
non-EV fraction (non-EV). The preparation of EV subpopula-
tions was adapted from a differential ultracentrifugation
protocol (34). The total fraction was first centrifuged at
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10,000 g for 30 min. The resulting pellet was washed with
phosphate-buffered saline (PBS) at 10,000 g for 30 min to
isolate a subpopulation of IEVs. The supernatant was then
ultracentrifuged on a 30% PBS-sucrose cushion at 100,000 g
for 70 min. The interface between the supernatant and the
PBS-sucrose cushion was collected and further washed in
PBS at 100,000 g for 70 min to obtain a population of SEVs.
All centrifugation steps were performed at 4°C. The sepa-
rated EV fractions were resuspended in PBS, aliquoted, and
stored at 4, —20, or —80°C before use for cell treatments, and
miRNA and protein content analyses, respectively.

Scanning Transmission Electron Microscopy Analysis

EVs were examined using negative stain electron micros-
copy. EVs were first incubated for 20 min on Formvar/car-
bon-coated copper 200 mesh grids (AGS162, Agar Scientific).
The grids were then washed with PBS and fixed with 1% glu-
taraldehyde (G5882, Sigma-Aldrich) in PBS for 5 min. After
eight washes with PBS, the samples were stained with
Uranyless (Delta Microscopies) for 1 min. The grids were sub-
sequently coated with a thin layer of platinum (0.8 nm)
using a Leica EM ACE600 high vacuum sputter coater. The
negatively stained grids were analyzed using a GeminiSEM
300 Zeiss scanning electron microscope equipped with a
scanning transmission electron microscopy (STEM) detector.
Observations were conducted at 27 keV with a 7.5 um dia-
phragm and a working distance of 4.5 mm.

Particle Measurements

The size and concentration of EVs were determined using
tunable resistive pulse sensing (TRPS) technology (Izon
Science). For this analysis, thermoplastic polyurethane nano-
pores NP400 and NP150 were used to measure the IEV and
SEV populations, respectively. Samples were diluted in PBS
containing 0.03% Tween-20, and measurements were taken
at multiple pressures to ensure accuracy. Calibration of the
TRPS system was conducted using CPC400 and CPC200
standards.

Protein Measurements and Western Blot Analysis

Total protein content in the EVs was quantified using a
micro-BCA assay kit (Cat. No. 23235; Thermo Fisher Scientific)
following the manufacturer’s instructions.

For western blot analysis, 3 or 5 pg of protein from each EV
sample was denatured in 6 x Laemmli buffer (Bio-Rad). As a
positive cell control, 10 or 15 pg of protein from primary osteo-
blasts (POBs) and primary bone cells were used and denatured
in 6x Laemmli buffer (Bio-Rad). Proteins were then separated
using precast 4%-15% polyacrylamide Mini-PROTEAN TGX
Stain-free gels under nonreducing conditions (for tetraspa-
nins CD9 and CD81) or reducing conditions (for all other pro-
teins). Following separation, proteins were transferred to
PVDF membranes (Bio-Rad) for further analysis.

Membranes were blocked in Tris-buffered saline with
Tween (TBST) containing 5% nonfat dry milk for 1 h. They
were then incubated overnight at 4°C with primary antibod-
ies diluted in TBST with 5% nonfat dry milk. The primary
antibodies used were as follows: anti-cadherin-2 (CADH2)
(Cat. No. ab18203, RRID:AB_44431, 1:1,000; Abcam), anti-
Calnexin (Cat. No. GTX109669, RRID:AB 1949824, 1:1,000;
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GeneTex), HRP anti-Cathepsin K (Cat. No. sc-48353, RRID:
AB_2087687,1:1,500; Santa Cruz Biotechnology), anti-CD9
(Cat. No. ab82390, RRID:AB_2244514, 1:1,000; Abcam), anti-
CD81 (Cat. No. 104901, RRID:AB_313136, 1:1,000; BioLegend),
HRP anti-Flotillin-1 (FLOT-1) (Cat. No. 849803, RRID:AB_
2728577, 1:2,500; BioLegend), anti-130 kDa cis-Golgi matrix
protein 1 (GM130) (Cat. No. 610823, RRID:AB_398142, 1:500;
BD Biosciences), anti-lysosomal-associated membrane pro-
tein 1 (LAMP-1) (Cat. No. ab24170, RRID:AB_775978, 1:1,000;
Abcam), anti-p84 (Cat. No. ab487, RRID:AB_304696, 1:1,000;
Abcam), anti-Podoplanin (Cat. No. ab131216, RRID:AB_
11157489, 1:1,000; Abcam), and anti-receptor activator of
nuclear factor kappa-B ligand (RANKL) (Cat. No. sc-377079,
RRID:AB_3678560, 1:1,000; Santa Cruz Biotechnology). After
primary antibody incubation, the membranes were washed
three times with TBST and then incubated for 1 h with sec-
ondary antibodies diluted in TBST with 5% nonfat dry milk.
The secondary antibodies included anti-goat (Cat. No.
HAFO019, RRID:AB_573132, 1:10,000; R and D Systems), anti-
hamster (Cat. No. PA1-32045, RRID:AB_10985178, 1:20,000;
Thermo Fisher Scientific), anti-mouse (Cat. No. A9917, RRID:
AB_258476, 1:100,000; Sigma-Aldrich), anti-rabbit (Cat. No.
7074, RRID:AB_2099233, 1:20,000 or 1:50,000; Cell Signaling
Technology), and anti-rat (Cat. No. 712-035-153, RRID:AB_
2340639, 1:100,000; Jackson ImmunoResearch Labs).

Detection was performed using SuperSignal West Femto
Maximum Sensitivity Substrate (Cat. No. 34095; Thermo
Fisher Scientific) and visualized with a ChemiDoc Imaging
System (Bio-Rad).

Primary Cells Preparation and Cell Culture Conditions

The study used the murine bone marrow-derived stroma
cell line ST2 (Research, Lot 5, RRID:CVCL_2205; German
Collection of Microorganisms and Cell Cultures GmbH), the
murine preosteoblastic cell line MC3T3-E1 (ATCC, CRL-2593,
subclone 4, RRID:CVCL_0409), and POBs.

POBs were isolated from the calvariae of 2- to 4-day-old
SWISS mice as previously described (35). Briefly, calvariae
were first digested with 0.2% type IV collagenase (Sigma-
Aldrich) in PBS supplemented with ethylenediaminetetra-
acetic acid (EDTA) for 15 min to remove fibroblasts. They
were then further digested with 0.2% type IV collagenase in
PBS for 1 h to specifically release osteoblastic cells. These
osteoblastic cells were expanded for 5-6 days in a-modified
Eagle’s medium (a-MEM, Biowest) supplemented with 10%
fetal bovine serum (FBS) (PAN-Biotech), 1% penicillin/strep-
tomycin (Thermo Fisher Scientific), and 1% L-glutamine
(Biowest). For experiments involving EVs, the FBS used was
depleted of EVs through ultracentrifugation at 100,000 g
overnight.

Primary bone cells were isolated from the tibias and
femurs of 8-wk-old male SWISS mice. The bones were
digested with 0.2% type IV collagenase (Sigma-Aldrich) in
PBS supplemented with 4 mM EDTA for 10 min at 37°C, then
rinsed with PBS. This step was repeated four times. The sam-
ples were first centrifuged at 259 g for 5 min and then at
10,000 g for 1 min. The cell pellet was resuspended in lysis
buffer to serve as a control for western blot analysis.

The ST2 and MC3T3-El1 cell lines were seeded at a density
of 1 x 10* cells/cm? for the uptake experiments. After 48 h,
5,000 ng of IEVs proteins, corresponding to 3.76 x 108 EVs,
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and 5,000 ng of sEVs proteins, corresponding to 3 x 10° EVs,
were added to the medium.

For alkaline phosphatase (ALP) assays, the ST2 cell line,
not yet committed to the osteoblastic lineage, and the
MC3T3-E1 cell line, already committed to the osteoblastic
lineage, was seeded at a density of 1.6 x 10* cells/cm? and
3 x 10% cells/cm?, respectively. After 24 h, osteogenic differ-
entiation was induced by adding 50 uM ascorbic acid and
10 mM B-glycerophosphate (Sigma-Aldrich), designated as
day 0. For experiments involving the total, EVtot, and non-
EV fractions, 7,500 ng of proteins were added to the medium
at day 0. For ALP assays with both IEVs and sEVs, three dif-
ferent concentrations were tested: 1x (4.2 x 107 EVs/cm?),
10x (4.2 x 10® EVs/cm?), and 50x (2.1 x 10° EVs/cm?).

For RNA extraction, ST2 or MC3T3-E1 cells were seeded at
a density of 2.4 x 10* cells/cm?. The osteogenic differentia-
tion protocol and the concentrations of IEVs and sEVs tested
were consistent with those used for the ALP assays.

Finally, POBs were plated at a density of 2.6 x 10% cells/
cm? for mineralized nodule formation assays. After 24 h,
osteogenic differentiation was initiated by adding 50 uM
ascorbic acid and 10 mM B-glycerophosphate (Sigma-
Aldrich). Simultaneously, 3.5 x 108 EVs/cm? were intro-
duced into the medium. The medium was replaced every
3-4 days, with fresh EVs added.

EV Labeling and Uptake Assays

EVs were labeled using MemGlow 640 (Cat. No. MG04-02;
Cytoskeleton, Inc.) following the manufacturer’s protocol. In
brief, the labeling solution was diluted 1:100 in the EV suspen-
sion and incubated in the dark on a rotating wheel for 30 min.
Post labeling, the suspension was centrifuged to separate the
EVs at 10,000 g for 30 min for IEVs and 100,000 g for 70 min
for sEVs. The same procedure was performed using PBS
instead of EV suspension to generate the experimental control
(CTL). The resuspension solution, with or without the labeled
EVs, was then added to the cell culture medium and incu-
bated with the cells for 4 h in the dark. After incubation, cells
were fixed with 4% paraformaldehyde (PFA) for 5 min at
room temperature (RT), and the nuclei were stained with
Hoechst diluted 1:5,000 (Invitrogen) for 15 min at RT. The
cells were then mounted in ProLong Gold antifade reagent
(Invitrogen) and examined using a Nikon Al confocal micro-
scope equipped with a x60/1.4 oil immersion objective.
Imaging was controlled using Nikon Imaging Software (NIS)
Elements software. Large images covering nine adjacent fields
of view were captured and processed using the NIS built-in
registration algorithm to properly stitch the images. High-
resolution images were recorded with the x60/1.4 oil objec-
tive, in accordance with the Nyquist sampling rate at 70 nm/
pixel. These images were then deconvolved using the Lucy
Richardson algorithm provided by the NIS software.

Cell morphology and structure features were observed
using the laser scanning confocal microscope’s reflection
modality, maintaining the same resolution as that used for
fluorescence imaging. The interface between biological
structures and the coverslip produces a strong reflective con-
trast signal. Descanning of the reflected excitation light (405
nm laser beam) to a detector enabled precise visualization of
unstained structures.
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Total RNA Isolation of ST2 and MC3T3 Cell Lines and
RT-gPCR

Total RNA was extracted using the NucleoSpin RNA XS kit
(Cat. No. 740990; Macherey-Nagel) according to the manufac-
turer’s instructions. RNA yield was quantified with a NanoDrop
1000 spectrophotometer (Thermo Fisher Scientific). For each
sample, 500 ng of total RNA was reverse-transcribed using the
Verso cDNA Kit (Cat. No. AB1453; Thermo Fisher Scientific)
with a combination of random primers and oligo dT. Real-time
quantitative PCR (RT-qPCR) was conducted using the ABsolute
Blue QPCR SYBR Green master mix (Cat. No. AB4166B; Thermo
Fisher Scientific) in triplicate. Primer sequences are listed in
Supplemental Table S1. gPCR was performed with a CFX96
Touch Deep Well 374 Real-Time PCR Detection System (Bio-
Rad). The relative expression levels of Osterix (Osx) and
Osteocalcin (Ocn) mRNA were normalized to the housekeeping
genes TATA-box binding protein (Tbp) and tyrosine 3-mono-
oxygenase/tryptophan 5-monooxygenase activation protein
zeta (Ywhaz). Expression levels were calculated as fold changes
relative to —EVs at day 0 control condition.

Alkaline Phosphatase Activity Measurement

ALP activity was assessed in ST2 cell lysates following a
freeze-thaw cycle and in EV subpopulations extracted from
bone. The ALP activity was quantified using an ALP sub-
strate Kit (Cat. No. 1721063; Bio-Rad), with results expressed
as nmol of p-nitrophenyl phosphate (PNP) hydrolyzed per
minute. To normalize the data, total protein content was
determined using a BCA protein assay kit (Cat. No. 23225;
Thermo Fisher Scientific) for cell lysates and a micro-BCA
protein assay kit (Cat. No. 23235; Thermo Fisher Scientific)
for EVs, following the manufacturer’s protocols. ALP activity
was expressed as nmol PNP per mg of protein per minute
(nmol PNP/mg protein/min). Alternatively, ALP activity
measured in EVs was normalized to the number of EVs and
was expressed as nmol PNP/10° EVs/min.

Mineralization Assay

Mineralized nodule formation in POBs was evaluated after
3 wk of culture in osteogenic medium. Following fixation
with 4% PFA for 15 min at 4°C, the mineralized extracellular
matrix was stained with Alizarin Red S (Sigma-Aldrich). To
quantify the mineralized nodules, the stained samples were
incubated in 10% acetic acid for 15 min with agitation to
elute the calcium-bound dye. The optical density of the elute
was measured at 450 nm.

Proteomics and Mass Spectrometry Analysis

Sample preparation.

Each sample was initially dried and resuspended in 10 pL of
8 M urea and 200 mM ammonium bicarbonate. The samples
were then reduced with 5 mM dithiothreitol at pH 8.0 and
37°C for 1 h with vortexing. After cooling to RT, 10 mM iodo-
acetamide was added for alkylation in the dark for 30 min.
Subsequently, the samples were diluted with 100 mM ammo-
nium bicarbonate, pH 8.0, to reach a final urea concentration
of 1 M. The samples were then digested overnight at 37°C using
0.2 pg of trypsin/LysC (Promega) with continuous vortexing.
The digested samples were loaded onto homemade C18 Tips,
which were packed by stacking three AttractSPE Disks (No.
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SPE-Disk-Bio-C18; Affinisep) for desalting. Peptides were
eluted using 40/60 MeCN/H,0 with 0.1% formic acid, followed
by vacuum concentration to dryness. The samples were then
reconstituted in 10 pL of injection buffer (0.3% trifluoroacetic
acid), and 2 pg of each sample were analyzed by liquid chro-
matography-tandem mass spectrometry (LC-MS/MS).

LC-MS/MS analysis.

Online chromatography was performed using an RSLCnano
system (Ultimate 3000; Thermo Scientific) coupled to an
Orbitrap Eclipse mass spectrometer (Thermo Scientific).
Peptides were initially trapped on a C18 column (75 pm inner
diameter x 2 cm; nanoViper Acclaim PepMap 100; Thermo
Scientific) with buffer A (2/98 MeCN/H,0 in 0.1% formic
acid) at a flow rate of 3 pL/min for 4 min. Separation was
then performed on a 50 cm x 75 pm C18 column (nanoViper
Acclaim PepMap RSLC, 2 pm, 100 A; Thermo Scientific)
regulated to a temperature of 50°C using a linear gradient
from 2% to 25% buffer B (100% MeCN in 0.1% formic acid)
over 91 min at a flow rate of 300 nL/min. MS1 data were col-
lected in the Orbitrap [120,000 at m/z 200 resolution; maxi-
mum injection time (IT) 60 ms; auto gain control (AGC) 4 x
10°]. Charge states between 2 and 7 were required for MS2
analysis, and a 60-s dynamic exclusion window was applied.
MS?2 scans were performed in the ion trap in rapid mode
with HCD fragmentation (isolation window 1.2 Da; normal-
ized collision energy (NCE) 30%; IT 60 ms; AGC 10%).

Mass spectrometry data analysis.

For identification, the data were searched against the Mus
musculus (UPOO0000589_10090) UniProt (RRID:SCR_002380)
database and a common contaminants database containing
245 proteins using Sequest-HT through Proteome Discoverer
(version 2.4, RRID:SCR_014477). The enzyme specificity was
set to trypsin, with a maximum of two missed cleavages
allowed. Oxidized methionine, Met-loss, Met-loss-acetyl, and
N-terminal acetylation were set as variable modifications,
whereas carbamidomethylation of cysteines was set as a fixed
modification. The maximum allowed mass deviation was set
to 10 ppm for monoisotopic precursor ions and 0.6 Da for
MS/MS peaks. The resulting files were further processed using
myProMS v. 3.10.0 (36) (https://github.com/bioinfo-pf-curie/
myproms). The false discovery rate (FDR) was calculated with
Percolator (RRID:SCR_005040) (37) and set to 1% at the pep-
tide level for the entire study. Label-free quantification was
performed by peptide-extracted ion chromatograms (XICs), re-
extracted under conditions and computed with MassChroQ
version 2.2.21 (RRID:SCR_026669) (38). For protein quantifica-
tion, XICs from proteotypic peptides shared between com-
pared conditions (TopN matching) and missed cleavages were
allowed. Median and scale normalization were applied to the
total signal to correct the XICs for each biological replicate,
accounting for total signal and global variance biases. To esti-
mate the significance of changes in protein abundance, a lin-
ear model adjusted on peptides and biological replicates was
generated, and P values were adjusted using the Benjamini-
Hochberg FDR procedure.

Proteins were selected for sample comparison if they pre-
sented at least three distinct peptides in three biological rep-
licates of both states. Proteins with an adjusted P value
<0.05 were considered significantly different in the sample

AJP-Cell Physiol « doi:10.1152/ajpcell.00272.2025 - www.ajpcell.org

comparisons. Specific proteins unique to a condition were
also considered if they met the peptide criteria. For other bio-
informatic analyses, label-free quantification (LFQ) was per-
formed using the previously described algorithm (39) for each
sample after peptide XIC normalization as detailed earlier.
The resulting LFQ intensities were used as indicators of pro-
tein (all peptides > 2) abundance. For Principal Component
Analysis (PCA) analyses, datasets were further filtered to
remove entities with more than 34% of the values missing
across all the samples used. The LFQ values were 1loglO-trans-
formed, and remaining missing values were imputed using
the missMDA R package (40) to create complete matrices.
Protein clustering (rows) was based on scaled loglO-trans-
formed LFQ value correlations, and Euclidean distances were
calculated for clustering samples (columns).

Proteins are further analyzed and subjected to gene ontology
(GO) functional enrichment analysis using MyProMS v. 3.10.0
(RRID:SCR_026670). Protein-protein interaction networks
were generated using the STRING (Search Tool for the
Retrieval of Interacting Genes/Proteins) database v. 12.0
(RRID:SCR_005223; https://string-db.org/) (41).

In addition, Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis was performed using DAVID v. 6.8
(RRID:SCR_001881; https://david.ncifcrf.gov/home.jsp) (42,
43) with proteins identified by at least three distinct peptides
in at least one biological replicate of each state.

Small RNA-Seq Analysis of EVs and MicroRNA Target
Gene Analysis

Total RNA from three replicates of 1IEVs and sEVs was
extracted using a miRNeasy Mini Kit (Cat. No. 217084; Qiagen)
following the manufacturer’s instructions. The quality and
concentration of the extracted RNA were determined using a
small RNA chip on an Agilent 2100 Bioanalyzer (Agilent
Technologies), according to the manufacturer’s instructions.
For library construction, 1-5 ng of the small RNA fraction
(<200 nucleotides) was processed using the Qiaseq miRNA
library prep kit (Qiagen) in accordance with the manufacturer’s
instructions. In brief, 3’ and 5’ adapters were ligated to each
end of the RNA molecules, which were then reverse-tran-
scribed and amplified to generate a cDNA library. Each library
was quality-controlled using a high-sensitivity HS DNA chip.
The libraries were sequenced on an Illumina MiSeq instrument
using 75-base-length reads in single-read mode. After sequenc-
ing, a primary analysis was conducted using AOZAN software
(ENS, Paris) to demultiplex and assess the quality of the raw
data, based on FastQC modules (version 0.11.5).

The Fastq files were processed using miRge3.0 with the
miRBase v22 Mus musculus GRCm38 reference (accession
NCBI_Assembly:GCA_000001635.2). Statistical analyses of
the read counts were performed using R (version 3.6.3) and
the DESeq2 package (DESeq2_1.26.0) to determine the pro-
portion of differentially expressed miRNAs between the two
conditions. The standard DESeq2 normalization method
(DESeq2’s median of ratios with the DESeq function) was
used. Following the package recommendations, the Wald
test was used with the contrast function, and the Benjamini-
Hochberg FDR control procedure was applied to identify the
differentially expressed miRNAs.

For analysis, miRNAs were selected for sample compari-
son if they had at least 10 counts in three replicates of both
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states. KEGG pathway analysis was performed using DIANA-
miRPath v. 4.0 (RRID:SCR_017354) (44) using predicted con-
served targets identified with the TargetScan Mouse v. 8.0
database.

Statistical Analysis

The number of experiments (N) and experimental repli-
cates (n) are specified in the figure legends. Initially, poten-
tial outliers were identified using the ROUT method and
excluded from the datasets. Data normality was assessed
using the Shapiro-Wilk test. For statistical analysis per-
formed on data obtained from more than seven independent
experiments, a two-way ANOVA was conducted. When sig-
nificant overall differences were detected by ANOVA, post
hoc Tukey’s test was used to examine differences between
experimental conditions. A paired ¢ test was used specifically
to compare ALP activity differences in EV subpopulations
between independent experiments. The nonparametric
Kruskal-Wallis test with Dunn’s post hoc test was applied for
the data obtained from fewer than seven independent
experiments or for the data that did not meet the normality
assumption. Statistical significance was determined as a P
value < 0.05. All individual data points are presented, and
the mean or median is shown when statistical analysis was
performed using a parametric or nonparametric test, respec-
tively. For ALP assay and gene expression determination,
two-way ANOVA was used to assess overall variation and P
values that could be attributed to EV subpopulations and
treatment time. Statistical analyses were performed using
Prism version 10.2.1 (RRID:SCR_002798; GraphPad Software).

RESULTS

Isolation and Characterization of Two Subpopulations
of EVs from Bone Tissue

To explore the potential osteogenic properties of bone-
derived EVs, we isolated EVs from young male mouse femurs

Figure 1. Extraction and evaluation of total bone-

Bone marrow B
_) one
removal

and tibias (Fig. 1A). Interestingly, less than 10% of the proteins
extracted from long bones were associated with the fraction
containing the EVs (EVtot; Fig. 1B). However, when we eval-
uated osteoblastic differentiation by the three fractions by
measuring ALP activity, an early marker of osteogenesis, in
ST2 cells, the EVtot fraction was the only one to significantly
increase ALP activity 1 and 3 days after induction (Fig. 1C). To
elucidate the source of this effect, we compared the biological
activity of subpopulations isolated from the EVtot fraction
based on size and density, using targeted approaches.

These two subpopulations of EVs, called small and large
EVs, were isolated using a modified differential ultracentrifu-
gation protocol (33). A 30% sucrose cushion was added during
the 100,000 g fraction isolation step to minimize coisolation
of protein aggregates (Fig. 2A). Both subpopulations were
characterized according to the Minimal Information for
Studies of Extracellular Vesicles (MISEV) criteria (8). Single-
particle analysis by the TRPS method showed an asymmetric
particle size distribution (Fig. 2B), with distinct mode diame-
ters for the two subpopulations named 1EVs (237.7 + 8.8 nm)
and sEVs (109.2 £ 8.3 nm) (Fig. 2C). STEM revealed that both
IEVs and sEVs exhibited spherical and cup-shaped morpholo-
gies typical of EVs (Fig. 2D) and with a recovery of 8.2+3.5 x
10% and 16.1+5.9 x 108 EVs per hindlimb for 1IEVs and sEVs,
respectively (Fig. 2E). In addition, the amount of protein per
million EVs was significantly higher in the IEV subpopulation
compared with the SEV subpopulation (13.3+9.6 ng/million
EVs vs. 1.7+ 0.5 ng/million EVs; Fig. 2F).

Molecular Composition of IEV and sV

We investigated the protein profiles of both populations
using mass spectrometry on EVs from three independent pro-
ductions. Principal component analysis (PCA) revealed that
the three IEV and SEV replicates clustered separately, indicat-
ing distinct and good reproducibility in protein compositions
and thus in EV isolation (Fig. 3A). Proteomic analysis identi-
fied a total of 998 proteins in 1IEVs (Supplemental Table S2)
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the particles, illustrating the range of particle sizes. C: mode particle diameter for the two EV subpopulations. D: scanning transmission electron microscopy
images showing bone-derived IEVs and sEVs. E: quantity of IEVs and sEVs recovered per hindlimb. F: protein recovery per million particles of IEVs and
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The Author(s) 2024. Published by Oxford University Press on behalf of the American Society for Bone and Mineral Research. Used with permission under
the Creative Commons Attribution (CC BY 4.0) license. EV, extracellular vesicle; IEV, large EV population; sEV, small EV population.

and 1,069 proteins in SEVs (Supplemental Table S3), with
897 proteins shared between the two, 101 unique to 1EVs
and 172 unique to sEVs (Fig. 3B; Supplemental Fig. S1).
Among the shared proteins, 596 exhibited significant dif-
ferential abundance (adjusted P value < 0.0S5, including
108 proteins enriched in IEVs and 188 enriched in SEVs).
GO analysis of the shared and unique proteins (697 in
IEVs and 768 in sEVs) revealed that proteins from both sub-
populations are associated with GO terms related to vesicle
and vesicular transport (Supplemental Fig. S2). In addition,
64% of the most abundant proteins identified in EVs across
all studies published in the Vesiclepedia database (http://

AJP-Cell Physiol « doi:10.1152/ajpcell.00272.2025 - www.ajpcell.org

microvesicles.org/extracellular_vesicle_markers) were pres-
ent in our EV subpopulations, including heat shock protein
90 (HSP90), annexin Al (ANXA1), PDCD6IP (also known as
Alix), and FLOT1. Moreover, we showed by western blot analy-
sis the presence of EV-specific markers, including CD9, CD81,
and LAMP-1. In addition, the intravesicular protein flotillin-1
was detected in both subpopulations (Fig. 3C). Interestingly, no
signal was detected for markers of the nuclear (p84) or Golgi
(GM130) compartments. However, calnexin, an endoplas-
mic reticulum marker, was present in both subpopulations
(Fig. 3D). This proteomic profiling confirmed the vesicular
nature of both subpopulations.
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Figure 3. Quantitative proteomic analysis of IEV and sEV subpopulations isolated from bone tissue. A: principal component analysis of protein profiles
from three replicates of IEV (orange) and sEV (purple) isolated from pools of 20 hindlimbs of 8-wk-old SWISS male mice. B: volcano plot illustrating the
differential protein composition between IEVs and sEVs. The y-axis represents the adjusted P value (—log10), and the x-axis shows the fold change
between the two EV subpopulations. Vertical lines denote log2 fold changes of —1and 1. Proteins unique to each subpopulation are displayed on the
left (IEVs) and right (sEVs) sides of the plot. Proteins specific to or enriched in IEVs and sEVs are highlighted in orange and purple, respectively.
Examples of known bone cell-expressed proteins and EV markers are indicated. C: Western blot analysis of vesicular markers in [EV and sEV subpopula-
tions. D: Western blot analysis of intracellular compartment markers in IEVs and sEVs, including p84 (nucleus), calnexin (endoplasmic reticulum), and
GM130 (Golgi apparatus). All western blot analyses were performed on the same sets of EVs isolated from pools of 30—40 hindlimbs from 8-wk-old
SWISS male mice in 3 independent experiments (prod no. 1, no. 2, and no. 3). Control (CTL) corresponds to proteins extracted from mouse calvaria pri-
mary osteoblasts. E: the associated KEGG pathways (based on adjusted P value) for the unique proteins for IEVs and sEVs are presented. The y-axis lists
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of each circle reflects the number of proteins. Data were derived from three independent proteome replicates. EV, extracellular vesicle; KEGG, Kyoto
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Proteomic analysis revealed the presence of several bone-
related proteins, including phosphate regulating endopepti-
dase X-linked (PHEX), collagen type I alpha 1 chain (COL1A1),
ALP, CADH?2, and tartrate-resistant acid phosphatase (TRAP)
(Fig. 3B). Some of these proteins (e.g., CADH2) and additional
proteins predominantly expressed in bone cells (e.g., RANKL,
Podoplanin, and Cathepsin K) that were not identified by
mass spectrometry according to our criteria of inclusion were
detected by western blot analysis (Supplemental Fig. S3A).

C1528

Given the identification of ALP by mass spectrometry, we fur-
ther assessed its enzymatic activity in EV subpopulations.
Total ALP activity was consistently higher in sEVs than in
IEVs across independent experiments (Supplemental Fig.
S3B). However, when normalized to vesicle number, 1EVs
exhibited a higher ALP activity content per million vesicles
(Supplemental Fig. S3C).

Beyond these common features, our analysis revealed
molecular differences between 1IEV and sEV. KEGG pathway
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Figure 4. Proteins identified by GO analy-
sis and associated with the skeletal sys-
tem in IEVs and sEVs. A: protein-protein
interaction network analysis of common
and unique proteins, generated using
STRING. Genes encoding proteins most
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G0:0060348 : Bone development
(p = 4.87e-06)

Fgr, Dig1, Epha2, Ctnnb1, Gnas, Gnagq, Src, Fgfr1 *,
Pdgfrb, Egfr, FIna, Anxa2, Anxa6

IEV, large EV population; sV, small EV
population.

G0:0060828 : Regulation of canonical Wnt
signaling pathway (p = 0.0019)

Ctnnb1, Src, Egfr, Gnaq

G0:000966 : Regulation of signal transduction
(p = 1.42e-05)

Fgr, DIg1, Epha2, Ctnnb1, Gnas, Gnaq, Src, Egfr,
Fgfr1™ Pdgfrb, Fina, Fhi2*, Bmpr2

G0:0007167 : Enzyme linked receptor protein
signaling pathway (p = 1.71e-07)

Fgr, Fat4™ Epha2, Ctnnb1, Src, Egfr, Fgfr1™, Pdgfrb,
Bmpr

G0:0060348 : Bone development

Mmp14, Sparc, Hspg2, Bgn, Col1a1, Mmp13, Ppib,
Col9at”, Ogn

5 (p = 1.21e-10)
G0:0031012 : Extracellular matrix Col1a1, Col1a2, Col9a1”, Aspn, Matn3*, Acan,
(p = 8.48e-19) Mmp13, Mmp14, Fbn1, Ptn*, Ogn, Bgn, Hspg2, Sparc
G0:0006793 : Phosphorus metabolic process Alpl, Enpp1, Acp5, Npr2, Phex
3 (p = 0.0213)
G0:0030282 : Bone mineralization Alpl, Enpp1, Phex
(p = 0.0014)
4 G0:0030316 : Osteoclast differentiation Teirg1, Tirc
(p = 0.0358)

analysis showed that proteins exclusive to IEVs are linked to
the spliceosome (mmu02040) (Fig. 3E). Conversely, proteins
unique to SEVs were associated with several pathways, includ-
ing metabolic pathways (mmu01100), regulation of the actin
cytoskeleton (mmu04810), and the vascular endothelial
growth factor (VEGF) signaling pathway (mmu04370).
Moreover, calcium-binding proteins (e.g., Calpain-6, 45
kDa calcium-binding protein, and soluble calcium-activated
nucleotidase 1), phosphatases (e.g., receptor-type tyrosine-
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protein phosphatase zeta, phosphatase and actin regulator 4,
tyrosine protein phosphatase nonreceptor type 13, and 2-
phosphoxylose phosphatase 1), and various receptors and G
proteins were also found among proteins unique to sEVs
(Supplemental Table S3). These results highlight the molecu-
lar differences between 1EVs and sEVs, which are likely due to
their distinct biogenesis pathways and cellular origin.

We focused on proteins associated with skeletal system-
related GO terms to identify those relevant to bone biology
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Figure 5. Quantitative miRNA analysis of IEV and sEV subpopulations isolated from bone tissue. A: volcano plot showing differentially expressed
miRNAs between IEVs and sEVs. The y-axis represents the adjusted P value (—log10), whereas the x-axis shows the fold change between the two EV
subpopulations. Vertical lines indicate log2 fold changes of —1 and 1. B: KEGG pathway analysis of predicted target genes for 34 miRNAs. The y-axis dis-
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chment level, indicating the percentage of predicted target genes associated

with each term. The size of each circle represents the number of predicted target genes. EV, extracellular vesicle; KEGG, Kyoto Encyclopedia of Genes

and Genomes; IEV, large EV population; sEV, small EV population.

(Supplemental Table S4). Protein-protein interaction analysis of
these proteins (i.e., 45 common, 7 unique to 1EVs, and 11 unique
to SEVs) revealed four main clusters (Fig. 4, A and B). These
clusters encompassed processes related to cellular signaling,
bone development, mineralization, and osteoclast differentia-
tion. Notably, cluster 1 was mostly linked to proteins enriched or
unique to sEVs and cluster 2 to proteins enriched or unique to
IEVs.

In addition to proteins associated with the skeletal system,
some proteins identified in 1IEVs and sEVs have been found
to be related to the nervous and muscular systems, as well as
proteins specific to endothelial cells (e.g., CD34, ICAM 1, and
VCAM 1) (Supplemental Tables S2 and S3). Several molecules
involved in both innate and adaptive immunity, such as
complement components (e.g., factor H, C3, C8 o/B) and pos-
itive regulators of T cell/B cell activation (e.g., Band 3 anion
transport protein, transferrin receptor protein 1, ANXAL,
FLOT-1, Semaphorin-7A) were also detected.

To better characterize the molecular cargo of these two EV
subpopulations, we also investigated their miRNA content.
Small RNA sequencing showed that miRNAs constituted
only a small fraction of the total reads, ~3% for IEVs and
10% for sEVs (Supplemental Fig. S4A). PCA analyses demon-
strated clear separation between 1EV and SEV miRNA
profiles as well as high homogeneity between the three repli-
cates (Supplemental Fig. S4B). This indicates good reprodu-
cibility in the miRNA extraction process and confirms the
difference between the two EV subpopulations.

Volcano plot analyses (Fig. S5A) revealed 139 miRNAs com-
mon to both IEVs and sEVs (Supplemental Table S5), sug-
gesting a shared miRNA landscape across subpopulations,
with only limited enrichment of individual miRNAs. KEGG

enrichment analysis performed on the 34 miRNAs with an
adjusted P value < 0.05 and their predicted target genes iden-
tified several pathways implicated in osteogenesis and osteo-
blast differentiation, including the Hippo (mmu04390), TGF-
B (mmu04350), and canonical Wnt (mmu04310) signaling
pathways (Fig. 5B). Among the predicted target genes listed in
Supplemental Table S6, some serve as inducers (e.g., Wnt fac-
tors, Tgfb), whereas others act as inhibitors (e.g., Axini,
Grem?2, Inhba, Nog, Ywahq, Ppp2r2d, Ppp2cb, Ppp2ca, and
Sost), suggesting that these miRNAs could modulate these
pathways either positively or negatively.

Although no miRNAs were found to be uniquely associated
with either subpopulation, the presence of osteogenesis-
related miRNAs in both IEVs and sEVs supports their poten-
tial involvement in the regulation of osteogenic signaling
mechanisms. These findings, consistent and complementary
to proteomic data, underline the functional relevance of EVs
in skeletal biology.

Analysis of the Osteogenic Potential of the Two EV
Subpopulations

To evaluate EVs with potential functional roles, it was crit-
ical to assess their cellular uptake. We assessed the internal-
ization of the two bone-derived EV subpopulations by ST2
(Fig. 6A) and MC3T3-E1 (Fig. 6B) cells. The EVs were prela-
beled with a green fluorescent dye, incubated with the cells
for 4 h, and then visualized using confocal microscopy. The
results showed that the green fluorescence was observed
inside cells, indicating successful internalization of both
IEVs and sEVs. The fluorescence was predominantly local-
ized to the perinuclear region of the cells.
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The osteogenic potential of IEVs and sEVs that was sug-
gested by proteomic and small RNA-seq analysis, was
assessed with ST2 stromal cells. These bone marrow-derived
cells represent a relevant model for investigating early stages
of osteoblastic differentiation, as they are not yet engaged
into the osteoblastic lineage and can differentiate into osteo-
blasts upon appropriate stimulation. To evaluate the com-
mitment of the ST2 cells into the osteoblastic lineage, ALP
activity and osterix (Osx) gene expression were assessed. At
the higher dose, IEVs exhibited a transient but substantial
and significant effect on ALP activity. Specifically, IEVs at
the higher dose induced a tenfold increase in ALP activity on
day 1, and a twofold increase on day 3. However, there was
no significant change in osterix (Osx), an early marker of
osteoblast differentiation, and osteocalcin (Ocn) expression,
a marker of mature osteoblast (Fig. 7A). Similar results were
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Figure 6. Cellular uptake of IEVs and sEVs.
Internalization of EVs labeled with MemGlow
640 was examined in stromal cells (ST2) (A)
and preosteoblastic cells (MC3T3-E1) (B) after
4 h of incubation. The experiments used
5,000 ng of IEVs proteins (equivalent to
3.76 x 108 EVs) and 5,000 ng of SEVs pro-
teins (equivalent to 3 x 10° EVs). Nuclei
were stained with Hoechst, and cell structure
was visualized by reflection. Control condi-
tion (CTL) corresponds to cells incubated
with MemGlow 640 in PBS. Reflection
images were used to visualize the shape
and structure of the cells. The dataset
includes representative images from 6 and 3
experiments involving IEVs and sEVs with
ST2 cells, and 3 and 1 experiments involving
IEVs and sEVs with MC3T3-E1 cells. EV,
extracellular vesicle; IEV, large EV popula-
tion; PBS, phosphate-buffered saline; sEV,
small EV population.

obtained for the expression of two other late markers,
Osteopontin (Opn) and Bone sialoprotein (Bsp) (data not
shown). In contrast, SEVs had no significant effect on ALP
activity, Osx and Ocn expression in ST2 cells (Fig. 7B).

The MC3T3-E1 preosteoblastic cell line and primary osteo-
blasts (POB) isolated from newborn mouse calvaria were pro-
ven to be more effective than ST2 for assessing the effect of
the EVs subpopulations on osteoblastic activity, probably
because both are already committed to the osteoblastic line-
age. This makes them better suited for evaluating the later
stages of osteogenic differentiation, including matrix produc-
tion and mineralization. Mineralized nodule formation assay
was conducted with POBs in the presence or absence of SEVs
from two independent productions at X10 dose. The assay
suggested that sEVs partially restored the ability of POBs to
form mineralized nodules in vitro, which was dramatically
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Figure 7. Effect of IEVs and sEVs on osteoblastic differentiation. A and B: the effect of IEVs and sEVs, respectively, on ALP activity on days O (DO), 7(D1),
and 3 (D3) and on the gene expression of early (Osterix, Osx) and late (Osteocalcin, Ocn) osteoblastic markers in ST2 cells after osteogenic treatment
on days 0 (DO), 1(D1), 3 (D3), and 6 (D6). Results are presented relative to the expression levels of —EVs at day O control condition. EVs were isolated
from pools of 30—40 hindlimbs of 8-wk-old SWISS male mice for each independent experiment. The EV doses are indicated as follows: X1 = 4.2 x 107
EVs/cm?; X10 and X50 correspond to 10 and 50 times the X1 dose, respectively. Cells treated with PBS served as the —EVs control. Statistical signifi-
cance was determined by one-way ANOVA followed by Tukey’s post hoc test (*P < 0.05; **P < 0.005; ****P < 0.0001) for ALP activity. Scatter plots
with bars at the mean and individual values are shown. For gene expression, the nonparametric Kruskal-Wallis test followed by Dunn’s post hoc test
was used and individual values and a line at the median are shown (N = 9 or 10, n = 4 or 5 for ALP activity, N = 3, n = 3 for gene expression). ALP, alka-
line phosphatase; EV, extracellular vesicle; IEV, large EV population; PBS, phosphate-buffered saline; sEV, small EV population.

impaired when ultracentrifuged EV-depleted serum was used
(Fig. 8A). Specifically, densitometric quantification showed a
fourfold reduction in alizarin red staining with EV-depleted
serum, and the addition of SEVs to the EV-depleted serum
induced an increase in alizarin staining (Fig. 8B). However,
although sEVs addition seemed to induce an increase in nod-
ules formation at day 21 in primary osteoblasts, no effect on
ALP activity could be observed when sEVs were added to
MC3T3-El1 cells culture at days 1 and 3 (Fig. 8C).

In these culture conditions, IEVs had no effect on mineral-
ized nodules formation on primary osteoblasts (data not
shown).

Taken together, these in vitro observations indicate dis-
tinct effects of the two EV subpopulations on stromal cell
differentiation and osteoblastic activity and suggest a
complementary role in osteogenesis.

DISCUSSION

To characterize the subpopulations of EVs present in
mouse long bones, identify their protein and microRNA
cargos, and initiate the evaluation of their osteogenic
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properties, we extracted EVs directly from bone tissue. The
isolation of EVs from whole bone represented a major techni-
cal challenge, particularly due to the density of bone tissue.
Considering the complexity of its cellular composition, this
approach was favored over isolation from cell culture super-
natants to ensure the analysis of natural EVs, thereby mini-
mizing potential biases introduced by artificial culture
conditions and stressors commonly used to enhance EV yield.
Furthermore, isolating EVs from fresh tissue helped limit cell
death and prevented the risk of excessive coisolation of apo-
ptotic bodies (46). Our proteomic analysis supported the
robustness of this strategy, since only a few proteins associ-
ated with cell death and apoptotic processes were detected in
IEVs, and proteins linked to apoptotic cell clearance were
found in sEVs. As opposed to EVs from cultured bone cells,
which dominate the existing literature, EV isolation directly
from bone tissue has been successfully reported only in
a small number of studies (33, 47, 48). Existing methods
rely mainly on ultracentrifugation, often associated with
enzymatic digestion (47, 48), which can alter EV content.
Although complementary techniques such as size exclusion
chromatography (SEC) can effectively remove contaminants,
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Figure 8. Effect of sEVs on osteoblast activity. A: min-
eralized nodule formation assay was assessed after 3
wk using Alizarin Red S staining in primary osteoblasts
(POBs) isolated from the calvaria of 2—4-day-old new-
born mice. Cells were cultured in osteogenic media
containing either 10% FBS (CTL+ complete serum),
10% EV-depleted FBS (CTL—), or 3.57 x 108 sEVs/cm?
(corresponding to the X10 dose). Media and sEVs
were replaced twice weekly. Results from two inde-
pendent preparations of sEVs, isolated from pools of
40-50 hindlimbs of 8-wk-old SWISS male mice, are
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SEC significantly reduces particle yield (49). Instead, we
opted for an ultracentrifugation protocol incorporating a
sucrose cushion, a modification shown by Gupta et al. (50)
to improves EV purity without sacrificing yield, therefore
minimizing the number of animals sacrificed.

Given the potential contamination by intracellular vesicles
released from ruptured cells or circulating EVs, we meticu-
lously analyzed the physical and biological characteristics of
bone cell-derived vesicles. STEM confirmed the typical cup-
shaped morphology of EVs, and immunoblotting and proteo-
mic analysis demonstrated the presence of canonical EV
marKkers in both large (IEV) and small (SEV) subpopulations,
supporting their identity as EVs. The detection of common
vesicular markers across both subpopulations was expected,
given the lack of specific markers in the literature to distin-
guish between EV subtypes (6).

Altogether, these findings confirm the successful and
reproducible isolation of two EV subpopulations from mouse
bone tissue.

Our physicochemical characterization and cargo identifica-
tion revealed that both IEVs and sEVs are intrinsically hetero-
geneous, with substantial overlap in their respective cargos,
~90% of proteins being shared between the both. Despite this
overlap, and although the presence of contaminants in our EV
preparations cannot be entirely ruled out, the two subpopula-
tions exhibited partially distinct molecular profiles. For exam-
ple, although recent research on bone- or osteocyte-derived
EVs has primarily focused on exosomes (13), in line with
broader trends in EV studies (51), our data provide evidence
for the existence of functionally active IEVs subpopulation
within bone tissue. This population shows distinct physico-
chemical properties and carries unique proteins not detected
in SEVs, suggesting that these two EVs subpopulations may
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presented. B: densitometric quantification of Alizarin
Red staining is shown, with results expressed relative
to the positive control (CTL + ). Data were normalized
to CTL+ condition. Individual values and a line at
mean are shown, N = 2. C: ALP activity was measured
in the MC3T3-E1 cell line at days 0 (DO), 1 (D1), and 3
(D3). Cells treated with PBS served as the —EVs con-
trol. The EV doses are indicated as follows: X1= 4.2 x
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Statistical significance was determined by the non-
parametric Kruskal-Wallis test followed by Dunn’s
post hoc test. Individual values and a line at the
median are shown (N = 6, n = 4 or 5). EVs were iso-
lated from pools of 30 hindlimbs from 8-wk-old SWISS
male mice. ALP, alkaline phosphatase; CTL, control;
EV, extracellular vesicle; FBS, fetal bovine serum; PBS,
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have distinct roles or functions, possibly contributing to bone
homeostasis.

Our findings corroborate previous studies that identified
proteins in EVs derived from various cellular organelles, such
as the nucleus/nucleoplasm (52, 53), the Golgi apparatus (54),
the endoplasmic reticulum (46), and the mitochondria (55,
56). This may result from organelle transfer via IEVs or from
intracellular vesicle crosstalk during EV biogenesis, espe-
cially in sEVs (57). Since the mechanisms by which proteins
and microRNAs are sorted into EVs are not yet fully under-
stood and are likely to vary (58), the presence of organelle-
specific markers likely reflects the functional diversity of EVs
rather than only contamination, as previously reported in
brain-derived EVs (59).

Since SEVs were prepared using a protocol initially designed
for extracting MVs from bone, it is plausible that MVs were coi-
solated with the sEV fraction. MVs, secreted by osteoblasts
and localized in the bone matrix (60), typically do not undergo
cellular internalization; however, they play a critical role in
ECM mineralization due to their high ALP content, an enzyme
essential for initiating this process (61). Despite their estab-
lished functions, there is ongoing debate regarding the classifi-
cation of MVs as EVs (28). Recent studies, however, have
highlighted differences in size, protein composition, and func-
tion between MVs and EVs derived from osteoblastic cell lines
in vitro, suggesting that these vesicle types have unique roles
and characteristics (30). Supporting this view, the hydroxyapa-
tite crystals, usually observed in MVs (61), were not detected
within SEVs in our STEM observations. Thus, sEVs isolated
from bone appear to be fundamentally different from MVs,
thereby reinforcing the idea that they represent independent
EV subpopulations with separate and complementary physio-
logical functions. Therefore, the presence of MVs in our SEV
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subpopulation alone cannot account for the partial restoration
of the mineralizing nodule formation capacity of POBs, which
highlights the role of SEVs.

Given the diversity of cell types within bone tissue, accu-
rately pinpointing the origins of bone-derived EVs poses a sig-
nificant challenge. In contrast to cell culture, where cell
numbers can be quantified, tissue samples do not offer direct
and easy access to their cellular composition. To determine
the overall cellular origins of EVs extracted from bone tissue,
the identification of specific markers becomes essential. Our
proteomic data revealed markers associated with osteocytes,
osteoblasts, and osteoclasts, indicating that EVs released by all
three lineages were present, albeit in undetermined propor-
tions. Nevertheless, the predominance of osteoblast/osteocyte
markers suggests that most EVs originated from that lineage.

Furthermore, not all bone cells release EVs simultaneously
or in equal quantities. The protein content of these EVs reflects
the variability in cellular responses to various stimuli, such as
mechanical stress and hypoxia. This heterogeneity likely
reflects the dynamic and responsive nature of bone tissue to
its mechanical and biochemical environment. Our proteomic
and small RNA-seq analyses indicate that a portion of the
bone-extracted EVs originates from osteocytes, which is con-
sistent with their prevalence as the most abundant cell type in
bone. We confirmed the presence in both EV subpopulations
of podoplanin, a protein widely present in young embedded
osteocytes that is involved in dendritic formation (3), and
PHEX, a protein highly expressed in osteocytes that regulates
biomineralization and mineral metabolism (3). Peptides corre-
sponding to other proteins highly expressed in osteocytes,
such as Dentin matrix acidic phosphoprotein 1 (DMP1) and
Matrix extracellular phosphoglycoprotein (MEPE), were also
detected, but their number did not meet our criteria for analy-
sis inclusion. It is crucial to acknowledge the heterogeneity of
osteocytes; their functionality and responses can vary signifi-
cantly based on their location within the osteocyte network
and the bone microstructure, which directly influences the
mechanical stimuli they experience, and likely contributes to
the variability in their EV cargo. Vaughan et al. (62) have
observed that only a subset of osteocytes acts as mechanore-
ceptors. Therefore, it is not surprising that not all osteocytes
release EVs in response to mechanical stimuli. Similarly, bio-
chemical signals may not uniformly affect all osteocytes
at once (63). This introduces a limitation in interpreting the
EV origin purely based on markers, as it cannot distinguish
between these different states.

Interestingly, our analysis also revealed proteins related to
neuronal functions, such as synapse and axon guidance, as
noted by Youlten et al. (64) in osteocytes. Some of these genes
were also highlighted in a transcriptomic study by Paic et al.
(65). The identified proteins are essential for establishing the
osteocyte network (66). Our analysis revealed the presence of
Semaphorin-7A and Plexin-B2, molecules initially recognized
for their roles in axonal guidance, that have also been associ-
ated with the promotion of osteoblast differentiation (67, 68).
Their presence in bone-derived EVs supports the hypothesis
that osteocyte-derived EVs carry bioactive factors that posi-
tively influence the osteoblast-osteocyte lineage, facilitating
the differentiation of osteocyte precursors.

Several miRNAs have been detected in osteocyte cell lines
and primary cells (69) or associated with their EVs (18). Among
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the most frequently reported miRNAs, we identified several in
our IEV and sEV subpopulations, including the miR-23 cluster,
miR-29b-3p, miR-3473b/e, and miR-145-5p. These miRNAs are
known to influence the osteoblast-osteocyte lineage by either
suppressing osteoblast differentiation, impairing osteocyte
function, or promoting the differentiation of both osteoblasts
and osteocytes. Furthermore, these miRNAs are often impli-
cated as downstream effectors of mechanical stimulation in
osteocytes (19, 70). The consistency of these miRNA profiles in
our EV subtypes confirms previously observed osteocyte-EV
signatures. Other miRNAs previously described in EVs derived
from osteocyte-like cell lines, such as MLO-Y4 and OCY454,
were also detected in our small RNA-seq analysis but were
excluded from further analysis as P values were >0.05.
Notably, and miR-218, found in OCY454-derived exosomes and
known to induce osteoblastogenesis through the canonical
Wnt pathway (17), was among those detected.

In addition, several studies have highlighted the multifac-
eted roles of osteoblast-derived EVs in osteogenesis and in
the induction of osteoclast resorption (23, 71). In line with
this, we detected miRNAs known to be enriched in osteo-
blast-derived EVs, including members of the let-7 family,
miR-125b, miR-29a-3p, and miR-23a/23b-3p. (72). In particu-
lar, miR-125b, which was enriched in sEVs in our study, was
previously shown to regulate osteoblast differentiation by
targeting Cbfp, a protein that forms heterodimers with Runx
proteins, and BMPR1b in MSCs (73, 74). Furthermore, miR-
143-3p, known to inhibit bone formation and promote osteo-
clastogenesis by targeting Cbfp (71), was present in both 1EVs
and sEVs in our analysis.

Proteins and miRNAs widely described in osteoclasts
(75, 76) were also detected in bone-derived EVs, including
cathepsin K (by western blot), and matrix metallopeptidase
9 (MMP9), TRAP, the subunit of type V proton ATPase,
and transferrin receptor protein 1 (through proteomic anal-
ysis). MMP9 and TRAP were exclusively found in 1EVs.
Furthermore, miR-214, a miRNA previously associated
with osteoclast-derived exosomes and known to inhibit
osteoblast function (20, 22) while promoting osteoclast dif-
ferentiation (77), was identified, although its adjusted P
value exceeded 0.05.

Overall, these results support the multilineage origin of
bone EVs, with a main contribution from osteocyte and
osteoblast. It highlights the complex and dynamic nature of
bone EVs and their cargo, which likely reflects both the cel-
lular diversity of bone tissue and the functional heterogene-
ity of EV-producing cells in response to environmental cues.

As we extracted EVs from whole bone, an organ in which
vascularization is essential for development and regeneration,
we anticipated detecting proteins specific to endothelial cells.
However, we identified only a limited number of endothelial
markers. This low detection likely reflects the low vascular
volume density (~0.13 %) in the midfemoral diaphysis (78),
and therefore may represent a sampling limitation rather
than a biological absence. By contrast, the detection of several
complement components and positive regulators of T cell/B
cell activation aligns with the emerging concept of osteoim-
munology, whereby EVs contribute to immune and bone cell
interactions (79). A recent study by Zhang et al. (48) supports
this view, having identified immune-related molecules in exo-
somes isolated from cortical bone through proteomic and
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transcriptomic analyses. Our findings further support this
novel hypothesis of a potential novel pathway for mutual reg-
ulation between the skeleton and the immune system.

Large and small EVs contain proteins and microRNAs that
suggest a potential role in osteogenic activity and in regulat-
ing bone remodeling to maintain bone health. We evaluated
their ability to induce cell differentiation using the stromal
ST2 cell line, to increase cell activity using the preosteoblas-
tic MC3T3-El1 cell line, and to induce mineralization using
primary osteoblasts from calvaria. Both IEVs and sEVs were
internalized by the ST2 and MC3T3-El cell lines, likely
through natural cellular uptake mechanisms, although other
pathways involving specific ligands or receptors on the
surfaces of EVs and cells cannot be ruled out (80).

Under our experimental conditions, only 1EVs significantly
enhanced the activity of ALP, an early marker of osteoblast dif-
ferentiation, in the stromal ST2 cell line. This suggests that
IEVs may promote osteoblastic commitment of stromal pro-
genitors. Notably, this effect was transient, likely due to a sin-
gle administration of EVs, with maximal activity observed
shortly after addition. This experimental setup, although
informative, does not reflect the sustained exposure that may
occur in vivo and should be considered a limitation of our in
vitro analysis. Several key components within IEVs may con-
tribute to the observed pro-osteogenic effect. Among them,
pleiotrophin (PTN), an angiogenic factor known to enhance
osteoblast differentiation (81), and four and a half LIM domains
2 (FHL-2), a multifunctional adaptor protein involved in bone
regulation (82) and the canonical Wnt/B-catenin pathway in
osteoblasts (83), are of particular interest. Enhancer of rudi-
mentary homolog, though less characterized in bone, has been
implicated in transcriptional regulation and cell cycle control
(84). In addition, 1IEVs are enriched with osteogenesis-related
miRNAs, including miR-15b-5p, which targets smad ubiquiti-
nation regulatory factor 1 (SMURF1), a protein that degrades
Runx2 and inhibits transforming growth factor p/bone mor-
phogenetic protein (TGF-B/BMP) signaling pathways (85).
Other relevant miRNAs, such as miR-29a-3p and miR-128-3p,
are known to enhance the Wnt signaling pathway (86-88).
Notably, both proteomic and miRNA analyses revealed that
1EVs are enriched with bone matrix components, such as Type
I collagen, Fibrillin-1, and Asporin, as well as proteins involved
in bone matrix organization, including Osteonectin and PTN.
Together with the presence of miR-29, these cargo elements
may contribute to the early phases of osteoblast differentiation,
supporting the transition from stromal commitment (89) to
matrix production, possibly through the activation of osteo-
genic pathways such as Wnt and BMP.

In contrast, SEVs do not affect Osx and Ocn gene expres-
sion in ST2 cells or on ALP activity in ST2 and MC3T3-E1
cells. But sEVs partially restored the ability of primary osteo-
blasts to form mineralized nodules under EV-depleted
conditions, possibly due to the presence of proteins specif-
ically associated with the process of bone matrix minerali-
zation, such as plasma membrane calcium-transporting
ATPase 1 (ATP2B1) (90) and bifunctional 3’-phosphoade-
nosine 5’-phosphosulfate synthase 2 (PAPSS2) (91), several
phosphatases, and various receptors and G proteins.

Altogether, our results underscore a functional complemen-
tarity between 1EVs and sEVs. Our data highlight the osteoin-
ductive potential of IEVs and their ability to prime stromal
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progenitors toward osteoblast differentiation. Conversely,
SEVs seems to contribute to osteogenesis through distinct
mechanisms.

In conclusion, in recent years, there has been a surge of
interest in using MSC-derived EVs for bone tissue engineer-
ing and regenerative medicine. Simultaneously, researchers
have concentrated on identifying the cargo of EVs from vari-
ous cellular origins that are integral to bone homeostasis and
regeneration (92, 93). This study primarily aimed to extract,
characterize, and start evaluating the osteogenic properties
of bone-derived EV subpopulations in vitro.

Despite the challenges associated with isolating EVs from
hard bone tissue, we successfully established a reproducible
protocol for extraction. For the first time, we isolated and
separated EVs extracted from bone tissue according to size
by ultracentrifugation into two EV subpopulations, IEVs and
SEVs, each exhibiting distinct effects on stromal and preos-
teoblastic cell lines in vitro. Our comprehensive proteomic
and miRNA analyses suggest that specific cargo within these
EVs may replicate some aspects of the functions of osteo-
clasts, osteoblasts, and osteocytes.

This work represents a significant step toward the func-
tional characterization of bone EVs and provides a strong
foundation for future studies aimed at fully elucidating
their complex mechanisms of action. Although the osteo-
genic assays were conducted in vitro under controlled con-
ditions, which differ from the in vivo dynamic environment,
they offer valuable insights into the potential of these
EVs and highlight the importance of exploring them fur-
ther. Importantly, these findings open promising avenues for
the development of targeted EV-based strategies to enhance
bone regeneration.
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